Diffusion model for iontophoresis measured by laser-Doppler perfusion flowmetry, applied to normal and preeclamptic pregnancies

Frits F. M. de Mul
University of Groningen
University Medical Center Groningen
Faculty of Medicine
Department of Biomedical Engineering
Anthonius Deusinglaan 1
9713 AV Groningen
The Netherlands
E-mail: f.f.m.de.mul@med.umcg.nl

Judith Blaauw
Jan G. Aarnoudse
University of Groningen
University Medical Center Groningen
Faculty of Medicine
Department of Obstetrics and Gynecology
Anthonius Deusinglaan 1
9713 AV Groningen
The Netherlands

Andries J. Smit
University of Groningen
University Medical Center Groningen
Faculty of Medicine
Department of Internal Medicine
Anthonius Deusinglaan 1
9713 AV Groningen
The Netherlands

Gerhard Rakhorst
University of Groningen
University of Medical Center Groningen
Faculty of Medicine
Department of Biomedical Engineering
Anthonius Deusinglaan 1
9713 AV Groningen
The Netherlands

Abstract. We present a physical model to describe iontophoresis time recordings. The model is a combination of monodimensional material diffusion and decay, probably due to transport by blood flow. It has four adjustable parameters, the diffusion coefficient, the decay constant, the height of the response, and the shot saturation constant, a parameter representing the relative importance of subsequent shots (in case of saturation). We test the model with measurements of blood perfusion in the capillary bed of the fingers of women who recently had preeclampsia and in women with a history of normal pregnancy. From the fits to the measurements, we conclude that the model provides a useful physical description of the iontophoresis process. © 2007 Society of Photo-Optical Instrumentation Engineers. DOI: 10.1117/1.2671053

Keywords: iontophoresis; flowmetry; pregnancy; laser-Doppler; tissue perfusion; preeclampsia.

1 Introduction

Iontophoresis is the introduction of charged substances into the skin by means of a small electrical current. It is based on the principle that a charged molecule migrates under the influence of an applied electrical field toward electrodes of opposite charge placed on tissue. Normally, one electrode consists of a conductive sponge, containing the material to be introduced. The other electrode is located some distance from the first one. A comprehensive review of the method, together with pharmaceutical, physiological, and experimental details, has been published by Banga.1

Laser-Doppler perfusion flow monitoring (LDPM) measures the averaged blood flow in small dermis vessels. Coherent light from a laser partly scatters in moving red blood cells before emerging at the tissue surface. Due to the Doppler effect, the frequency of the light will slightly change according to the velocity of the cells. A photodiode, measuring both the original laser light and the Doppler-shifted emerged light, will produce a Doppler frequency signal. The strength of this signal depends on the moving blood cell flow.

The combination of LDPM and iontophoresis offers an opportunity to assess changes in the cutaneous microcirculation after administration of vaso-active drugs without systemic effects. Iontophoresis of sodium nitroprusside (SNP), donating directly nitric oxide, is commonly accepted to provoke endothelium-independent vasodilatation, whereas iontophoresis of acetylcholine chloride (ACh) is commonly used to test endothelium-dependent vasodilatation. The methodology us-
The model should also admit leakage of drug material due to transport by blood flow out of the tissue under the iontoprobe. However, this diffusion model does not include leakage of material other than toward infinite depth, and thus we have to include an extra term for that purpose. Therefore, we insert a decay function analogously to radioactive decay. Further, since iontophoresis protocols frequently consist of several subsequent shots, the model should take care of this. Finally, the model should be maximum protocol independent.

In the literature, some modeling of normal (not electrically sustained) diffusion of molecules through membranes into tissue has been published. Most models rely on Fick’s law of material diffusion in one dimension. Flynn gives an overview of several of these models, together with experimental data of the permeability coefficients P (in cm/h) and the partition coefficients K (dimensionless) for the material transfer at the octanol/water partition, which is supposed to resemble the stratum-corneum/water partition. He also indicates the relation with the diffusion coefficient D (in cm2/s):

$$P = KD/h,$$ \hspace{1cm} (1)

where h is the thickness of the membrane. This thickness is normally taken as about 0.5 mm for tissue epidermis, and 500 nm for lipid layers. The latter authors also investigated the permeability results of Flynn and others in extensive detail.

A purely phenomenological model for iontophoresis diffusion was presented by Özbebit et al. It consisted of one or two hyperbolic time functions, but without underlying physical argumentation. This model only tries to describe the onset of excess flow after the start of administering the material, but not the whole time recording.

The study was part of a broader investigation of pregnant and nonpregnant women, with or without hypertension, during or after pregnancy. Since our present objective is to present the model, we only present data for patients and control persons postpartum. Other measurements will be published elsewhere.

2 Model

Perfusion changes after iontophoresis were measured with laser-Doppler perfusion flowmetry. Upon administering drugs like ACh or SNP, a change in the blood perfusion is measured. We assume that microvascular capillaries react by vasodilatation, thus enlarging the blood perfusion either by an increase in the number of moving red blood cells or by an increase in their velocities. In both ways the transport of the administered drug out of the region under examination will be favored.

The iontophoresis process is determined by the geometry of the iontophoresis/laser-Doppler probe and the tissue region that is measured. Normally, the probe will contain two (or more) glass fibers for transport of the laser light, one for light supply and one (or more) for the reflected light (see Fig. 2). At the tissue surface, these fibers are positioned at standardized separation distances (here 250 μm). The diameter of the fibers is typically 100 to 200 μm. The fibers are placed in the center of a larger container, with typical diameters of 10 to 20 mm and height of 10 mm. The container is filled with sponge-like material, fit to store the drug to be administered, and in electrical contact with the tissue. An electrode is con-
In iontophoresis protocols, frequently a number of shots is administered. We deal with that shortly. In Fig. 3(a), this diffusion function is sketched for inspection. It is seen that for chosen values of \(z\), the function first will increase and finally decrease to zero.

The time functions decrease toward zero slowly, which is due to the absence of leakage of material, other than toward \(z \to \infty\). In reality we have leakage of molecules out of the measured volume (in pharmacokinetics “distribution”), due to transport by blood perfusion (“elimination”). More generally, the effect of the molecules on the perfusion may decrease in time, either due to removal or to saturation effects or reduction in efficiency (“tolerance”). This presents an extra term in the differential equation, analogous to the term representing decay, as with radioactive decay, or with a decrease of gas concentrations using ventilation. With this extra term, the equation reads:

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial z^2} - \lambda c,
\]

with \(\lambda\) as the decay constant (\(\lambda > 0\), related to the “half-value time” \(T_{1/2}\) by \(T_{1/2} = \ln 2/\lambda\). The solution of the decay part of Eq. (5) (with \(D=0\)) is

\[
c(t) = c(0) \exp(-\lambda t),
\]

the well-known exponential decay function. The final solution of Eq. (5) is

\[
c(z,t) = c(0) \exp\left(-\lambda \frac{z^2}{4Dt}\right),
\]

with \(c(0)\) as the concentration at \(z=0\) before the shot, \(D\) as the diffusion coefficient, \(t\) as the time, \(z\) as the distance from the injection site, and \(\lambda\) as the decay constant (in time units).
This expression can be derived analytically using Laplace-transformation techniques. The validity can be verified by the insertion of Eq. (7) into Eq. (5). Figure 3(b) presents a sketch of this solution for a nonzero value of the decay constant λ.

A comparison of these two figures shows a faster decrease from maximum toward zero when we include the decay function.

The maximum of the function of Eq. (7) is found at

$$t_{\text{max}} = \frac{1}{4\lambda} \left[-1 + \sqrt{1 + \frac{2z^2\lambda}{D}} \right],$$

which reduces to $z^2/(4D)$ when λ is very small (i.e., slow washout). The actual amplitude of the maximum can be found by insertion of t_{max} in Eq. (7).

The next step assumes that the flow, as measured using laser-Doppler perfusion flowmetry, is proportional to the concentration of administered drug molecules. This technique measures the average blood flow F, which can be considered as the (averaged) product of the concentration of moving red blood cells and their velocities (see Sec. 3 for experimental details). According to our remarks in Sec. 1, we assume that the excess blood flow ΔF upon drug injection, i.e., the increase of the flow above its level in resting conditions, is proportional to the actual concentration of drug molecules. With this assumption we arrive at the expression

$$\Delta F(t) = \frac{Q_0}{\sqrt{\pi Dt}} \exp\left(-\frac{z^2}{4Dt} - \lambda t\right),$$

with Q_0 as a constant related to the maximum value. We adopted this expression for comparison with our experimental data. In this way, the variable z represents an average depth for the diffusion and decay process to take place.

Normally in iontophoresis, a series of shots is delivered instead of a single shot. For repeated shots, the start condition of zero concentration at all depths is not valid any more. This may lead to a process of saturation, since the concentration at low depths will increase with time, which eventually (at high concentrations) may hamper new molecules to diffuse inward. Another cause for saturation might be the limited capacity of the vessel wall to incorporate iontophoresis molecules, which might reduce the flow. As a first approximation, we take that into account using

$$\Delta F(t) = \sum_{n=1}^{N} \exp\left[-(n-1)s\right] \frac{Q_0}{\sqrt{\pi D t_n}} \exp\left(-\frac{z^2}{4Dt_n} - \lambda t_n\right),$$

$$t_n = t - (n-1)\Delta t,$$

where n stands for the shot number ($n=1 \ldots N$), s is a constant accounting for the saturation effect, t_n is the time of the nth shot, and Δt is the time interval between the shots. The summation is taken for positive t_n values only. When s is zero, all shots contribute equally, albeit time-shifted (and the time record will start smoothly). When s is much larger than unity, only the first shot contributes (and the time record starts more abruptly).
cording. For each group of subjects, the standard deviation was calculated afterward by standard methods.

We included an option for a Gaussian weighting filter \(f_{\text{w}}(t) \) for the points:

\[
f_{\text{w}}(t) = \exp\left(-\frac{(t/t_b)^2}{2}\right); \quad t_b = \frac{(t_{\text{end}} - t_{\text{begin}})}{2},
\]

with \(t_{\text{begin}} \) and \(t_{\text{end}} \) as the starting and end time points of the fit, respectively (all times are measured from the starting point). However, it turns out that applying this filter has only a slight effect on the resulting parameter values. This can be understood by realizing that most significant contributions to \(\chi^2 \) appear for small times \(t \).

3 Measurements

Skin perfusion was measured by a Periflux 4000 laser-Doppler system in combination with a Periflux tissue heater set to 31°C (PF4005, Peritemp), with all equipment from Perimed, Sweden. A laser beam (wavelength of 780 nm) is conducted through optical fibers to illuminate the skin. As the precise investigated volume is unknown, the signal collected during the measurements. Caffeine-containing drinks and smoking were not allowed 2 h prior to the test.

A special iontophoresis probe (PF481-2, Perimed, Sweden) containing a thermostatic probe holder was placed on the dorsal side of the middle phalanx of the third finger. A second probe was placed at the first phalanx of the same finger and measured the blood perfusion without being influenced by the administration of the drugs.

A battery-powered iontophoresis controller (PeriIont 382, Perimed, Sweden) was used to provide a direct current for drug iontophoresis. The monitor’s signal processing electronics calculates the zero and first moments, \(M_0 \) and \(M_1 \), of the frequency power spectrum \(S(\omega) \) of the measured ac-signal \(f(t) \):

\[
M_n = \int_{\omega_1}^{\omega_2} \omega^n S(\omega)d\omega; \quad n = 0, 1,
\]

with \(\omega_1 \) and \(\omega_2 \) as the bandwidth limits (set at 20 Hz to 12 kHz). This calculation is done in the time domain, and corresponds to the zero-time autocorrelation values of the signal and its derivative, respectively. From \(M_1(t) \) the perfusion flow is obtained after division (normalization) with the square of the total reflection from the sample. \(M_0(t) \) can be considered as a measure for the concentration of moving scattering particles (red blood cells). In this study, we did not use this function. A PC equipped with a data-acquisition subsystem recorded the analog outputs of the monitor at a rate of 40 measurements per second. The data files were processed for conversion from mV to perfusion units (PU) by division with the gain factor of the instrument (10 mV/PU). Afterward, the data were averaged per 40 samples to remove heart beat fluctuations. This resulted in data at 1-s intervals.

Table 1

<table>
<thead>
<tr>
<th>Code</th>
<th>ACh</th>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preeclampsia patients (postpartum)</td>
<td>PPP</td>
<td>22</td>
</tr>
<tr>
<td>Controls (healthy) (postpartum)</td>
<td>PPC</td>
<td>18</td>
</tr>
<tr>
<td>Reclining flow measurement, duration (s)</td>
<td>600(1)</td>
<td>600(1)</td>
</tr>
<tr>
<td>Shot duration (s)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Current (mA), anodal (A), or cathodal (C)</td>
<td>0.1 A</td>
<td>0.2 C</td>
</tr>
<tr>
<td>Number of shots</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Shot interval (s) ((t))</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Duration of occlusion (s)</td>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>

The laser-Doppler perfusion measurements were performed using a standardized protocol,\(^{23,10}\) including:

- resting flow, for a duration \(\Delta t \),
- \(n \) shots, with current \(i \), each with a duration of \(\Delta t \), and with time intervals of \(\Delta t \) (measured between the respective start times of the shots)
- at about 5 to 10 min after the end of the last shot, start of an arterial occlusion for 3 min
- release of the occlusion, followed by a measurement of the return to resting flow condition.

The occlusion period provided the biological zero signal level. This level was subtracted from the perfusion signal before all further calculations.

Women with Caucasian skin type participated in this study: 25 women with a history of early onset preeclampsia and 23 healthy women with uncomplicated pregnancies. Not all recordings appeared useful; a few recordings from both groups had to be discarded due to disturbing signal artifacts. Preeclampsia was defined according to the criteria of the International Society for the Study of Hypertension in Pregnancy: the appearance of a diastolic blood pressure (DBP) \(\geq 90 \text{ mmHg} \) measured at two occasions at least 4 h apart in combination with proteinuria \(\geq 300 \text{ mg/24 h or 2+ dipstick} \) developing after a gestational age of 20 weeks in a previously normotensive woman. All women had singleton pregnancies and were tested between 3 and 11 months postpartum. None of the participants used any medication during the studies. Women with pre-existing hypertension (blood pressure before 20 weeks of gestation \(\geq 140/90 \text{ mmHg} \) or using antihypertensive medication), diabetes mellitus, renal disease, preeclampsia in a previous pregnancy, or who were using vasoactive drugs were excluded. The experimental procedure and the population of subjects were previously described in detail by Blauw et al.\(^5\) In Table 1 we summarized the experimental settings.
4 Results and Discussion

In Fig. 4 we present a typical example of a time recording of one of the patients. It is seen that upon drug administration, the flux increases sharply from the resting flow level, followed by a much slower decrease toward the resting flow level. The effect of the multiple shots is clearly seen.

We discuss the results in two ways. First, in physical terms, which comprises the validation of the fitting procedure, together with an evaluation of the reduced χ^2 values. Second, we briefly discuss the clinical relevance.

4.1 Physical Analysis

The model was fitted to all recordings of the two groups. For these measurements, we did not use the Gaussian fitting filter, given in Eq. (12). In Fig. 4 the fitted model is shown, together with the measured data and the resting flux line. The fitting program offers the option to include the starting time point as an extra parameter, but with these measurements we fixed the starting time to the values given in Table 1.

After fitting the model to the individual recordings, averaged values were calculated, in which the reduced χ^2 values might be used as weighting factors, according to:

$$\langle P \rangle = \frac{\sum_{i=1}^{N} \frac{P_i}{\chi^2_i}}{\sum_{i=1}^{N} \frac{1}{\chi^2_i}},$$

where P stands for each of the parameters or results of the fit, and i counts for the subjects in the groups ($i=1\ldots N$). The approximated standard deviation in $\langle P \rangle$ was calculated using the standard formula.

In Fig. 5 we show an overview of the fitted parameters for one of the four groups of subjects: the patients with SNP as the administered drug (PPP-SNP). Points: $\bullet = \tau_1; \quad \square = \tau_2; \quad \circ = s; \quad \Delta = \text{max}/\text{rest}; \quad \times = \chi^2_{\text{red}}$. max = maximum value of the fitted curve; F_{rest} = resting flux value. Lines drawn to guide the eye. Subject 9 has an s-value $>10^5$ (i.e., first shot contributes only).

Additionally, with some subjects (in other groups), the decay parameter τ_2 may rise above that maximum value during the fit. Those subjects were also excluded in the calculation of the averaged τ_2 value of that group. Table 2 shows an overview of the number of excluded subjects per group. It is remarkable, however, that while one of the parameters grows to a large value, the other parameters remain within limits, comparable to the values obtained with other subjects. We have to investigate that point more closely.

In Fig. 6 the averaged values of the fit parameters are shown. The error bars indicate the standard deviations in these averages (or standard errors in the means). Recalculation of the averages, without applying the χ^2 weighting, resulted for all variables and all groups in shifts $<5\%$, thus within the standard deviation range. The averaged χ^2 values over the four groups are between 1 and 2.5, indicating fits with deviations from the measured data, ranging from equal to about twice the standard deviation in those measured data. We conclude that the fitting procedure worked satisfactorily.

From Fig. 6 it is seen that the groups of patients show larger values for the diffusion time constant τ_1 than the corresponding control groups, meaning that the diffusion will take place over a longer time scale. The values for τ_2 show a pattern that indicates that with ACh the removal (or decay)

<table>
<thead>
<tr>
<th>Excluded subjects in the groups for the calculation of the group average of the parameters s and τ_2, respectively.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP-ACh</td>
</tr>
<tr>
<td>$s > 10^5$</td>
</tr>
<tr>
<td>$\tau_2 > 10^5$</td>
</tr>
</tbody>
</table>
time is longer than with SNP. The shot saturation constant \(s \) is large for ACh but small for SNP. This means that with SNP, all shots do contribute, but for with ACh, only the first few shots contribute. The values for \(t_M \) also reflect this behavior: with SNP it takes more time to reach the maximum than with ACh. The ratios of the maxima and the resting fluxes appear to show differences for the ACh-administered control group persons, compared with the other groups.

From the time parameter \(t_1 \) we may calculate the apparent diffusion coefficient \(D \), using Eq. (10), provided we insert a proper value for the “effective perfusion depth \(z \).” Assuming \(z=1 \) mm, we obtain diffusion coefficient values as given in Table 3.

Also in Table 3, half-life decay times \(T_{1/2} \), from \(T_{1/2} = \ln 2 / \lambda = \ln 2 \tau_z \), are shown. These times indicate the time needed for removal of half the actual concentration.

We compared the values for the diffusion coefficient with the literature data. From Flynn’s tables for normal (not electrically sustained) diffusion over membranes, we can estimate permeability constants and from those, using Eq. (1), diffusivities (diffusion constants), which are in the order of \(10^{-10} \) cm\(^2\)/s. To do this, we calculated the diffusivity \(D \) for Flynn’s whole list of permeability data of about 100 compounds, using Eq. (1) with \(h=0.5 \) mm,\(^9\) and interpolated the results at the molecular weight values of ACh and SNP. The logarithmic relation in Eq. (6) of Ref. 9, including the molecular weight, led to similar results.

When we choose \(z=1 \) mm, the diffusion coefficients for iontophoresis diffusion, which is electrically sustained, are about 4 orders of magnitude larger than the free, nonsustained diffusion coefficient values. This may lead to the establishment of an “iontophoresis diffusion amplification factor,” which could be about \(10^4 \), using the values indicated earlier.

4.2 Clinical Analysis

A primary analysis of the microvascular measurements, based on manual estimation of the ratio of maximum flux and resting flux, has been presented by Blaauw et al.\(^5\) Using the model, we are able to add data about the time constants for diffusion and decay, \(t_1 \) and \(t_2 \), respectively, the saturation constant \(s \), maximum flux, vasodilatation expressed as relative increase in flux from the resting flux obtained by the model (Figs. 7 and 8), and the time interval from start of the iontophoresis and time of reaching maximum flux. Figures 7–9 were obtained without the \(\chi^2 \) weighing.

We used a Komolgorov-Smirnov test to assess the normality of the data. Since all parameters turned out to be non-normally distributed, the nonparametric Mann-Whitney test was used for testing group differences. To investigate how well the endpoint parameters for the vasodilatation obtained manually and using the model fit agreed, the difference between the two methods was plotted against the average of both methods (Fig. 9). We used the SPSS-software package, version 12.0.1. Significance was accepted at \(p<0.05 \).

Microvascular reactivity was tested in 25 recently preeclamptic women and 23 controls. Of these 96 measurements, 18 were discarded, as they did not fit in the model, resulting in a total of 21 measurements in the PPP-ACh group, 19 measurements in the PPP-SNP group, 18 measurements in the PPC-ACh group, and 20 measurements in the PPC-SNP group. In the case of the parameters \(t_1 \) and \(s \), few measurements were discarded, as they fell totally out of range (Table 2).

With respect to iontophoresis of ACh, women with recent preeclampsia showed significantly higher values for vasodilatation (Fig. 8), as we presented and discussed before. No sig-

Table 3

<table>
<thead>
<tr>
<th></th>
<th>PPP-ACh</th>
<th>PPC-ACh</th>
<th>PPP-SNP</th>
<th>PPC-SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_1) (s)</td>
<td>214</td>
<td>130</td>
<td>324</td>
<td>156</td>
</tr>
<tr>
<td>(D) (10^{-6}) cm(^2)/s</td>
<td>11.7</td>
<td>19.2</td>
<td>7.7</td>
<td>16.0</td>
</tr>
<tr>
<td>(\tau_2) (s)</td>
<td>5511</td>
<td>3515</td>
<td>348</td>
<td>1121</td>
</tr>
<tr>
<td>(T_{1/2}) (s)</td>
<td>3820</td>
<td>2436</td>
<td>241</td>
<td>777</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
</tr>
<tr>
<td>(\tau_1) (s)</td>
<td>73</td>
<td>38</td>
<td>55</td>
<td>34</td>
</tr>
<tr>
<td>(D) (10^{-6}) cm(^2)/s</td>
<td>4.0</td>
<td>5.6</td>
<td>1.3</td>
<td>3.5</td>
</tr>
<tr>
<td>(\tau_2) (s)</td>
<td>1970</td>
<td>1415</td>
<td>118</td>
<td>369</td>
</tr>
<tr>
<td>(T_{1/2}) (s)</td>
<td>1366</td>
<td>981</td>
<td>82</td>
<td>256</td>
</tr>
</tbody>
</table>
significant differences were noticed for the other parameters (Figs. 7–9).

With respect to iontophoresis of SNP, significantly higher values for τ_1 [Fig. 7(a)] were found, whereas lower values for τ_2 [Fig. 7(b)] were noticed for the formerly preeclamptic group compared to the controls. This indicates that diffusion of SNP takes a longer time and the decay or washout of SNP in the formerly preeclamptic group takes shorter times than in the control group.

5 Conclusions

We introduce a physical model to describe the iontophoresis process, as applied to normal and preeclamptic pregnancies. We derive characteristic times for diffusion and for decay (washout and/or saturation). We are able to properly account for the subsequence of iontophoresis shots, used in administering the drugs to the tissue of the subjects.

We see differences in the time recordings of the groups of patients and control persons, and in the type of administered material. These differences are quantified using the variables τ_1, τ_2, and s, with probability values p.

![Fig. 7](image1.png) Measured data for the diffusion time constant τ_1, the decay time constant τ_2, and the saturation constant s, with probability values p.

![Fig. 8](image2.png) Vasodilatation (percent), or the maximum excess flux (above the resting flux), relative to that resting flux level.

![Fig. 9](image3.png) Difference between vasodilatation (percent) obtained manually and using the model procedure, plotted against the average of the two methods.
of the physical model. Results of further investigations, including other groups of patients, will be published elsewhere.

Frequently, iontophoresis experiments cannot easily be compared due to differences in the clinical protocols adopted by various experimentalists. We hope that this model might help in the future when comparing and interpreting those iontophoresis measurements, and in standardizing protocols for measurements and procedures for analysis of the experimental data.

As a general conclusion, this modeling of the iontophoretic diffusion might offer the opportunity to derive diffusion coefficients and time constants, which may provide a better insight into iontophoretic processes in tissue.

References