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Abstract
Teaching physics to first-year university students (in the USA: junior/senior
level) is often hampered by their lack of skills in the underlying mathematics,
and that in turn may block their understanding of the physics and their ability
to solve problems. Examples are vector algebra, differential expressions and
multi-dimensional integrations, and the Gauss and Ampère laws learnt in
electromagnetism courses. To enhance those skills in a quick and efficient way
we have developed ‘Integrating Mathematics in University Physics’, in which
students are provided with a selection of problems (exercises) that explicitly
deal with the relation between physics and mathematics.

The project is based on computer-assisted instruction (CAI), and available
via the Internet1. Normally, in CAI a predefined student-guiding sequence
for problem solving is used (systematic problem solving). For self-learning
this approach was found to be far too rigid. Therefore, we developed the
‘adventurous problem solving’ (APS) method. In this new approach, the student
has to find the solution by developing his own problem-solving strategy in an
interactive way. The assessment of mathematical answers to physical questions
is performed using a background link with an algebraic symbolic language
interpreter. This manuscript concentrates on the subject of APS.

(Some figures in this article are in colour only in the electronic version)

1 http://tnweb.tn.utwente.nl/onderwijs/; or http://www.utwente.nl/; search or click to: CONECT.
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1. Introduction

This study addresses the question of how mathematical knowledge and skills can be integrated
into studying university physics. Frequently novices not only suffer from knowledge
fragmentation within physics, but also from knowledge fragmentation ‘across domains’:
physics and mathematics are seen as independent disciplines, with no relationship between
them [1, 2]. The practice of dividing introductory curricula into separate physical and
mathematical courses may increase this dichotomy unless an effort is made to integrate
them. Apart from introducing mathematical logic, reasoning and calculus, mathematics
courses should aim to show physics students the mathematical tools that are used in physics.
Such courses may introduce conceptual knowledge, but often the emphasis is on procedural
knowledge, in order to promote the acquisition of mathematical skills. However, these
mathematical procedures, often taught with full mathematical rigor, are hardly ever applied as
such in physics. Consequently, afterwards students are still unable to apply their mathematical
knowledge in a physics context [3, 4], which means that their mathematical skills are
insufficient for that purpose.

An electromagnetism (EM) course is rather abstract in comparison to other first year
university courses (in the USA: junior/senior level) such as mechanics. Basic EM is not really
an empirical subject. Hence, instruction is more difficult, since few comparisons with the
real world can be made. Due to the level of abstraction, EM requires a highly mathematical
formalism. Albe et al [1] observed, for example, that students have problems in associating
mathematical formalism with physical descriptions of the magnetic field and the flux. As
a result, the lack of integration of mathematical knowledge and skills into physics is more
perceptible in such a course. In conclusion, there is a need to integrate mathematical knowledge
and skills into physics and support the view that mathematics is a formalism for expressing or
applying conceptual understanding [3, 4].

In this study it is supposed that intentional integration of mathematics into physics courses
will improve problem-solving performance because (a) mathematical techniques are related
to physics concepts and therefore should be available when required and (b) a mathematical
formalism is advantageous at any stage of physical problem-solving. Consequently, students
should feel the need to shift from a formula-centred problem-solving strategy towards a theory-
based strategy, which is grounded on concepts and principles. By ‘strategy’ we mean the path
the student consciously plans (or should plan) to cover from the moment of posing the problem,
up to the moment of presenting the answer. Mathematics should then be seen as a method to
describe physics instead of being considered to be a disconnected discipline.

With this contribution we have the primary objective of introducing an efficient method
to merge mathematics into physics: the adventurous problem-solving (APS) method. As a
vehicle to apply APS we use the IMUP courseware (Integrating Mathematics in University
Physics) [5]. Here we do not aim to present and discuss data about research concerning IMUP
in full detail.

In what follows, by a ‘problem’ we mean an ‘exercise’, with or without physical context.

2. Adventurous problem solving

Normally, in CAI (computer assisted instruction) a predefined student-guiding sequence for
problem solving is used (systematic problem solving approach, SPA). However, although this
approach in theory may offer the most efficient problem-solving strategy, it has the disadvantage
of being very rigid in the sequence of steps to be taken. Therefore, we developed the APS
method. In this approach, the student has to find the solution by developing their own problem
solving strategy in an interactive way.

2.1. Systematic problem-solving strategies

Mettes and Pilot [6, 7] developed a CAI model to solve physics problems in thermodynamics.
van Weeren et al [8] simplified this model for an EM course (see figure 1 for an overview)
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Figure 1. Typical problem-solving strategy for experts and students [8]. The ‘ideal’ strategy is the
direct route from ‘analysis’ to ‘control’. Typically experts concentrate on ‘analysis’ and ‘approach’,
successfully followed by ‘work-out’, while students frequently remain trapped in ‘relations’ and
‘work-out’-attempts.

into the main phases: ‘analysis’, ‘relations’, ‘approach’, ‘work out’ and ‘control’. Reading the
problem statement (including the figures) and performing an initial analysis is supposed to help
students to develop a basic interpretation of the problem. Analysing the problem and looking
for key relations is considered to enhance the development of a mental representation of the
problem, and the establishment of an approach to tackle the problem. Then, the problem should
be represented symbolically by using key relations and mathematical formalism. Subsequently,
these mathematical equations should be worked out. Finally, the symbolic answer should be
checked to see if it makes sense in the physical representation of the problem, by checking the
dimensions and values of the calculated quantities and considering limit cases.

van Weeren et al [8] studied how students solved such problems. In addition, they
compared students’ performance to that of experts (experienced teachers or researchers).
Figure 1 summarizes their findings, showing the students’ use of formula-centred problem-
solving strategies. Experts spent much more time in the ‘analysis’ and ‘approach’ phases than
students did, which is in agreement with Hestenes’ [9] observations. The implementation
of their systematic approach for problem solving resulted in an improvement of successful
participation of the students, but involved considerable guidance by the teacher.

However, for self-learning purposes, we found the SPA model to be far too rigid in its
sequence of steps to be taken. By no means can all problems be treated in such a scheme.
Secondly, too many students appeared to become very tired and even demotivated upon working
with this imposed strategy. Moreover, the SPA model, although supposed to describe the ideal
problem-solving strategy in science (i.e. from posing the problem, straight to presenting the
answer), simply does not reflect the way scientists normally work. We decided to design a
new model.

2.2. Introducing the ‘adventurous problem-solving strategy’

We have devised the APS learner-controlled environment, aimed at improving problem-
solving skills. Although APS might stand alone as a method, we embedded it in the IMUP
courseware [5] (see below), meant to enhance the integration of mathematical and physics
concepts [10], especially for the EM course. Therefore, the focus was not on knowledge alone,
which is supposed not to have a positive effect in the learning process by itself [11], but on the
whole problem-solving process: the representation of the physical reality, the transformation
into mathematical representation, and the physical interpretation of the results. We included
computer algebra calculations and added immediate feedback and guideline or help options.

The main reason to devise APS + IMUP in CAI form is that we want to encourage the
students to master this subject autonomously, without the need for teachers to interfere, so that
in class the teacher can concentrate on physics only, and not have to bother about mathematical
skills. On the other hand, the teacher wants to obtain information about the progress of his
students, and therefore we have also devised an automated analysis program.
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Figure 2. APS approach. Students have to find their own way through the problem, and may enter
the various problem-solving phases at will, having options for reflections about how to proceed.
They are free to skip phases and go directly to (e.g.) ‘work-out’ or ‘control’, when they feel having
already sufficient knowledge to do so.

In the APS framework, problem solving is built in a modular way. First we divided the
solution process into phases, basically following van Weeren’s [8] model. Although the phases
might be predetermined, in the APS approach the sequence in which the problem has to be
solved is not. Students are free to complete the problem following different paths through the
set of phases, seen as (virtual) ‘rooms’ to pass,with a special room (‘general menu’ room) where
they can reflect on the chosen sequence and the results obtained ‘so far’ (see figure 2). This
approach enables the students to control their progress by offering them ‘intelligent’ feedback
upon their performance, so that the student may receive information about his progress.

The sequences that students follow to solve problems may provide information about
their strategies and the development of their problem-solving skills. Therefore, students’
performance was studied and compared to those of experts in order to answer the following
questions:

(a) Do students perform similarly to experts in the APS framework?
(b) In which phases do they spend most of their time? and
(c) Which approach do they follow to solve the problem?

In addition, students were surveyed on their appreciation of the APS framework.
Larkin et al [12] observed that experts usually try to work in a straightforward direction

through the phases. van Weeren [8] found that experts typically focus initially on the analysis
and the approach. They may also skip phases, as a result of chunking [12, 13]. It is assumed
that experts, surveying the whole problem, implicitly assess which particular problem-solving
phases make sense or not in the physics context. In contrast, students use more formula-centred
problem-solving strategies. Therefore, we may expect students to spend much time in sub-
problems, directly trying to work out those chosen formulae. We have studied this process
over time for a number of students and experts. Larkin et al [12] also found that experts spent
less than one quarter of the time required by a novice to solve a problem. To get some insight
in this point, we studied the percentage of the total time spent in each phase.

2.3. ‘IMUP’: Integrating mathematics in university physics

At the Faculty of Applied Physics of the University of Twente, it was observed that students
did not sufficiently master the mathematical concepts and skills required for an undergraduate
EM course, especially the methods that were related to integral calculus, although some
dedicated mathematical courses had preceded in the curriculum (see table 1). In spite of
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Table 1. Mathematical concepts and skills required for solving EM problems.

Topic Subtopics

Vectors Addition of vectors, modulus, unit vector, component, projection.
Coordinates Cartesian, polar, cylindrical and spherical coordinates, transformation, symmetries,

3D insight.
Differential calculus Differential elements, gradient, divergence, curl.
Integral calculus Multidimensional integration, integration limits, line/surface/volume integrals; vectorial

integration.

their mathematical knowledge learnt in calculus courses, students could not easily transfer
that knowledge and skills to a physics context. In these calculus courses, students were first
taught the mathematical concepts and methods. Then, although they extensively practised
these methods, they could hardly ever relate the mathematical concepts and methods to
applications in physics. As a result, students have trouble connecting the physics concepts and
the mathematical concepts, which may even result in a blocking of physical knowledge because
the mathematical language is not understood properly. An example is the ‘mathematical’
teaching of Gauss’ Law, which seems to offer no help when afterwards the ‘physical’ teaching
is done.

A further illustration of this lack of skills is shown in the example of how to find the
charge of a sphere carrying a position-dependent volume charge density. Although students
from mathematics courses will probably have learned how to calculate an integral, that is not
enough to know how to solve this problem. One also needs to understand what an integral stands
for, in the physical and the mathematical sense. Students need to acquire concepts, like the
integral being the addition of differential elements, the limits of integration corresponding to the
shape of the body which is being integrated, and the description being related to the physical
dimensions. Further, students need to learn skills of how to apply those concepts. Hence,
students need to acquire an integrated strategy, where physical concepts and mathematical
methods are related to each other.

CAI makes it possible to reproduce the physics problem-solving process step by step. CAI
is a self-path instruction, which allows students to invest more time in the steps they do not
understand. The CAI we developed aims at the integration of the mathematical concepts and
methods in physics problem solving. Therefore, we called it the IMUP courseware.

The IMUP courseware was developed in the Dutch language, but some problems are
already presented in an English translation. The courseware is based on HTML, adds intelligent
behaviour by means of JavaScript, and couples with an algebraic symbolic language interpreter
on the server side in order to evaluate mathematical symbolic answers to physical questions [5].
Briefly, this is done by symbolically subtracting (or dividing) the students’ answer from
the correct one, and if the result yields zero (or one), the student has got the right answer.
This approach enables intelligent answer checking, the use of multiple coordinate systems,
intelligent dimension analysis, and evaluation of numerical answers.

3. Method and materials

3.1. The IMUP courseware

The part of the courseware that supplemented the EM course consisted of three short problems
(introducing some mathematics about 3D integration) and eight complex (physical) problems
(table 2). All of them belonged to the standard collection of EM problems ‘to be done’.
Six complex problems were developed on the APS framework. The first two problems were
developed to be completed sequentially (SPA), so that students could gradually introduce
themselves into the CAI/APS framework.
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Figure 3. APS interface of problem M1 (see table 2). The student has a free choice to enter each
phase indicated on the circle. However, when choosing prematurely, he will soon discover that
he has to adapt his strategy. For instance, when choosing the page ‘integral’, he will find out that
he has to complete other pages first (unless he already has sufficient background knowledge to
complete the phase directly).

Table 2. IMUP exercises for APS. SPA: systematic problem-solving approach; APS: adventurous
problem solving. In all problems the field vector has to be calculated, and afterwards an extension
to infinite dimensions has to be carried out. E = electric; M = magnetic.

E1 SPA Electric field of a long straight, homogeneously charged wire.
E2 SPA Electric field of a segment of a homogeneously charged straight wire.
E3 APS Electric field in the point above a homogeneously charged plane (using strip or ring
E4 APS integration).

Electric field above, below and in a thick charged plane with charge density varying over
E5 APS thickness (using integration).
M1 APS The same, but with Gauss’ law.
M2 APS Magnetic field of a uniform surface current flowing over a strip with finite width.

Magnetic field on the axis of a disc with finite radius and with non-uniform circular
M3 APS current density (with Biot–Savart).

Magnetic field of a long thick wire with non-uniform current density (with Ampère’s law).

3.2. The APS learner-controlled environment

The APS framework consists of an opening page including the problem statement, a graphic
representation of the problem, and a brief initial analysis in the form of some questions
(e.g. about symmetries). Then, the ‘General Menu’ screen appears. This menu shows the
(clickable) names of the different phases of the solution of the exercise (see figure 3 for an
example). Basically, we used the phase names as given by van Weeren [8] but, to make the
concept of phases more tractable for the students, we gave them names more closely connected
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Figure 4. Typical APS page, taken from a mathematical problem supporting the EM course: ‘3D
integration’. The student has to enter the differential form for this particular case, after having
derived the form for the general case with constant charge density. When the button ‘Evaluate’ is
pressed, the student’s answer is evaluated by comparing with the proper answer using a symbolic
algebra language interpreter. This procedure is applied for all symbolic-type responses the student
has to enter.

to the problem at hand. The student can navigate freely from one phase to another through
the APS menu. A phase that is successfully completed is marked with an approval mark. In a
few cases, like the work-out (integral) phase, the answer is not evaluated at that point. In such
a case, the approval mark is set only to show students that the phase was ‘visited’ and that an
answer was given.

After the initial analysis, the first task the student should undertake is to develop an
approach to solving the problem (leading to, for example, the choice between integration over
rings or over strips).

Typically the student has to enter his responses in symbolic algebraic form (figure 4),
which is then evaluated by the program, using a hidden (background) link with an algebraic
symbolic language interpreter, by algebraic comparison to the proper answer, and the result of
this comparison is reported to the student.

The page structure is kept similar for all presented problems. The presentation of the
content, as well as of the questions that are asked in each phase, is comparable from one
exercise to another, although slight modifications were made to suit each problem.

The structure is flexible enough to enable the student to skip phases, if wanted, for instance
in cases where the student has obtained the result of those phases (e.g. an integral expression)
in another way before, such as ‘using pencil and paper’.

3.3. Registration of data

Participants’ performance is registered into an Access (Microsoft®) database. Each time a
student enters a response to be assessed, a record (line) (figure 5) is written into the database.
Each record contains information about the student and his performance:
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Figure 5. Data file of the performance of the students. From these files, a student’s progression
through the problems can be followed and assessed, using a dedicated computer program.

(a) a record identification number (ID) uniquely identifying each entry by a student,
(b) a student identification number (St-ID),
(c) a phase column containing the particular question,
(d) an input field with the students’ answer,
(e) an evaluation field where the result of the assessment of that answer is written,
(f) a comments field to register additional information on the students’ performance.

3.4. Analysis of data

The analysis of the performance of the students is based on the detailed breakdown of the
problems at hand into phases and sub-phases. The phases correspond to major steps in the
problem-solving process (e.g. situation analysis, symmetry, work-out and evaluation) and
the sub-phases are subdivisions of the phases (e.g. separate pages on screen, or different
mathematical or physical steps).

In addition to the statistical features offered by the Access program we developed a
specialized analysis program, written in Delphi (APS matrix, available from the authors).
This program offers the following options:

• tracking individual students (or groups of students) on their paths through the problem;
• calculating statistics of groups of students while performing a task of solving a problem;
• distinguishing between intermediate answers being ‘correct’ or ‘wrong’, while leaving a

phase or a sub-phase in the problem;
• distinguishing between final results being ‘correct’ or ‘wrong’;
• assessing how the student controls the problem and performs the evaluation of his solving

process;
• recording residence times spent in the (sub)-phases;
• calculating averaged residence frequencies and times, with standard deviations, and

presenting those in the form of tables, or of graphical representation indicating the ‘flow’
through the problem.

In figure 6 a typical output of the analysis program is shown. In this case, the solving
process by a group of students is analysed and averaged residence times and percentages are
calculated (not shown). Also, the way the students moved from one phase to another (going in
forward or backward directions) is indicated, using bars connecting the phases. The thickness
of the bars indicates the frequency of occurrence, and the figure should be read in a clockwise
direction.
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Figure 6. Output of program APS matrix (no numerical statistics shown): students’ transitions
between the main phases of problem E2: IA = intro-analysis; A = analysis; KR = key relations;
SP1–SP4 = physical steps; WO = work out; C = control; E = end result. Most main phases
are divided into sub-phases. The transitions should be read clockwise. The thickness of the lines
relates to the frequency of the transition. In light grey, possible transitions according to the ideal
strategic approach (as indicated in figure 1) are shown. The statistical data (not shown) contain
information about times spent in various phases and percentages for ‘right’ versus ‘wrong’ answers.
The calculations can be performed for individual students or for pre/defined groups of students.

4. Results and discussion

Here we focus discussion on the method itself, and only present some typical results of the
analysis. A detailed description of the results was published elsewhere [16].

Using the program APS matrix, we analysed the process of problem solving as performed
by the students and by experts. There were remarkable differences in strategy, either between
students and experts on the one hand, or between students at the beginning and at the end of
the course. As an example: in problem E3 (with infinite dimensions) one may choose between
two ways: one by integration over strips of finite width, and another by integration over rings.
A majority of students (80% of about 40 students) chose the first one, but most experts chose
the second one (3 of 4).

Although the time spent in the various (sub)-phases by the students was larger in the
absolute sense (by about a factor of 2), the relative time spent over the phases did not differ
significantly between students and experts. This indicates that the problems did not contain
questions that were extra difficult, especially for the students. The participants spent most of
their time in phases where they have to give a symbolic answer (see figure 6: SP2, SP4 and
WO). In such phases, the answer cannot be guessed. The fact that the program requires a
specific algebraic notation may also influence the time they need to enter the response. The
other phases contain either multiple-choice questions or only the evaluation of an answer to
be entered.

The strategy that the experts use resembles more closely the ‘ideal’ problem-solving
strategy than the one the students use. In addition, the experts use more forward strategies than
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Figure 7. Frequencies (%) of 70 students agreeing with statements about APS in the questionnaire.
The questions were: (1) Are the phases clearly defined? (2) Was it easy to find out how to start?
(3) Was it easy to discover the proper sequence of phases? (4) Did you succeed in finding the way
to solution? (5) Did APS require you to think more about the process? (6) Did APS encourage
you to make a better analysis? (7) Did APS better simulate the solving process than a sequential
scheme? (8) Would you like all exercises (problems) in APS format? (9) Would you like to have
APS to start from the beginning of the course, or (10) from about halfway in the course?.

students, who instead use more backward strategies. The difference is significant (77% and
62% respectively, with SD ≈ 10). This agrees with the forward-chaining strategy observed
by Larkin [14]. de Jong [15] described how students made 50% of the transitions according
to that strategic model. In the present study this percentage is almost 70%. Though these two
experiments are difficult to compare, it indicates that the APS environment induces students
to follow a more strategic approach.

We investigated the students’ opinions about the APS approach using a detailed
questionnaire [16], see figure 7 for an overview. In addition, the opinions on the statements
of weak and good students were compared (final marks on the EM course lower or higher
than 6 out of 10, respectively). On the points of clarity and easy sequencing the first group
significantly favours the SPA approach (average 3.0 ± 0.9 on a 0–5 scale), while the second
group is more in favour of APS (average 4.2 ± 0.7). The results on the questionnaire show
that the use of the APS framework has advantages and disadvantages. It seems to enhance
problem-solving strategy, since students indicate that, using it, they learn a strategy for problem
solving. In addition, they feel they can determine their own approach, which is in agreement
with the aim of the APS approach. However, this approach may appear as being disorderly,
especially for weak students at the start of the course, who have difficulties in finding where
to start and in determining the sequence in which the problem should be solved. The results
indicate that there are two categories: (a) students willing to discover the solution approach
by themselves and (b) students preferring to get guidance on how to solve problems. In both
cases, students think that the learning effect is in the strategic approach for problem solving.

This method of analysis could probably also be used as an attempt to quantify the ‘problem-
solving skills’ of a student. Referring to figure 6, a sequence that follows the diagonal line
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from top to bottom more closely and more monotonically (less backward loops to ‘previous’
phases), might indicate better (i.e. more efficient and successful) problem-solving skills. This
might be expressed in a ‘figure of merit’, inversely proportional to the number of excursions
off the diagonal path and to the number of backward loops.

5. Conclusion

We have described a way to help university physics students incorporate mathematical skills
into the solution process of physics problems. We devised APS, a CAI framework, in which
students need to find their own way to tackle the problems. This framework was incorporated
into IMUP, which has a link to an algebraic symbolic language interpreter, so that mathematical
responses to physical questions, in the form of expressions entered by the student, can be
assessed in a symbolical way. To date, we have devised eight electromagnetic problems
(exercises) in this form.

We also developed a computerized way to analyse the progress of a student’s passage
through the solution process. This enables us to assess improvements in the ability of the
students to tackle physics problems requiring mathematical skills, in a semi-quantitative way.
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