An experiment that went wrong

1

An experiment that went wrong

Chernobyl, 26 April 1986 causes and effects

Frits F.M. de Mul

"One decade after Chernobyl, summing up the consequences" Proc. International Chernobyl Conference, Vienna, 8-12 April 1996 IAEA, EU, WHO, UN, Unesco, FAO, OESO, ICRP

"Sources and Effects of Ionizing Radiation", vol II: "Effects" App. J: "Exposures and Effects of the Chernobyl Accident" UNSCEAR Report 2000 (United Nations Scientific Committee on the Effects of Atomic Radiation", Vienna, 2001 References

Intern. Conf. "Fifteen Years after the Chernobyl Accident", Kiev, 18-20 April 2001; EU, IAEA, UN, Ukraine, Belarus, Russia, France, Germany.

^{3rd} Intern. Conf. "Health Effects of the Chernobyl Accident",Kiev, 4-8 June 2001; WHO, UN, IAEA, UNSCEAR, ICRP, Ukraine, Belarus, Russia.

"Environmental consequences of the Chernobyl accident..., Twenty years of experience",
"Chernobyl's Legacy: Health, Environmental en Socio-economic Impacts; Recommendations", UN Chernobyl Forum, Aug. 2005.
IAEA, FAO, UNDP, UNSCEAR, WHO, Ukraine, Belarus, Russia.

"Sources and Effects of Ionizing Radiation", vol II: "Effects" App.D: "Exposures and Effects of the Chernobyl Accident" UNSCEAR Report 2008-11 (United Nations Scientific Committee on the Effects of Atomic Radiation", Vienna, 2011

Contents

- 1. Topography
- 2. The reactor
- 3. The accident
- 4. Intermezzo: Natural radiation effects
- 5. Emission
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. Situation in the Netherlands and Europe

Contents

- 1. **Topography**
- 2. The reactor
- 3. The accident
- 4. Intermezzo: Natural radiation effects
- 5. Emission
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. Situation in the Netherlands and Europe

Topography

- 1. Topography
- 2. <u>The reactor</u>
- 3. The accident
- 4. Intermezzo: Natural radiation effects
- 5. Emission
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. Situation in the Netherlands and Europe

Cerenkov effect in nuclear reactor Photo: Research reactor (3 MW), Techn. Univ. Delft

How to control	manually:
----------------	-----------

- a fly?
- a supertanker?

Impossible because:

- too fast
- too slow

Golden Rule in Control Technology:

• time scale of controller \approx time scale of object

Nuclear Reactor:

- core dimensions \approx meters
- neutron speed > 1 km/s (1 m in 1 msec)
- \rightarrow time scale ≈ 1 msec

Impossible to control manually or using equipment.

Nuclear Reactor:

- core dimensions \approx meters
- neutron speed > 1 km/s
- \rightarrow time scale ≈ 1 msec

Impossible to control manually or using equipment !

However: Emission of a small part (≈ 0.7 %) of neutrons is delayed over 8 sec!

So: This facilitates the reactor control, provided: changes are < 0.7 % in 8 sec.

Still extremely difficult to control manually !

The Chernobyl reactor: pressurized boiling-water reactor

o Boiling light water reactor, steam under pressure

o Power : 3200 MW thermal

The reactor

т/

- UO_2 tablets in rods; 2 % enriched in ²³⁵U o Contents:
- o Moderator: mostly graphite;
- o Absorber: control rods (cadmium) and cooling water (with boron)
- o Turbines: 2 x 500 MW electric, direct steam injection (1 circuit; no heat exchanger)
- o Core: diameter 12 m; height 7 m
- o Pump system: 4 pumps ; 3 necessary
- o Emergency cooling system: present

o Control: needed for stable operation: 30 control rods in the core FdM

The reactor (2)

- 1. Topography
- 2. The reactor
- 3. <u>The accident</u>
- 4. Intermezzo: Natural radiation effects
- 5. Emission
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. Situation in the Netherlands and Europe

The accident (1)

<u>25 April 1986</u>:

Plan: Stop for maintenance.

Question: can decelerating turbines produce sufficient power to operate emergency cooling pumps?

Plan for experiment:

- emergency cooling system off
- reactor switched off

The accident (2)

<u>26 April 1986</u>:

00.00 h: Reduction thermal power : $3200 \rightarrow .750$ MW. 00.28 h: Reduction to 500 MW.

Control from automatic to manual !!!.

00.30 h: Unexpected power drop to 30 MW thermal.

Operator tries to increase power by extraction of control rods from core

6-8 control rods left in the core (estimated); **!!!** (essential for stable operation: > 30)

01.00 h: Power now 200 MW thermal, but very unstable. Operator: extra water, to reduce steam pressure

The accident (3)

<u>26 April 1986</u>:

01.00 h: Power now 200 MW thermal, but very unstable. Operator: extra water, to reduce steam pressure Normal effect: "automatic stop",

but control was "manual", thus no stop.

01.20 h: Power very unstable.

Operator reduces water flow to stabilize pressure

Pressure rises again, reactor seems stable.

01.23 h: Decision: test experiment may take place.

The accident (4)

<u>26 April 1986</u>:

- 01.23 h: Decision: test experiment may take place.
- 01.23 h: However: steam pressure rises too fast, thus: less water, but consequence: more power
- 01.23 h: Power increase now exponential. Insertion of extra control rods: manual; far too slow.

01.24 h: Power excursion to about 100 x normal power..

01.24 h: Reactions of water and fission materials: Pressure waves in fission tubes

Two explosions: (1) steam; (2) expansion fission

The accident (5)

<u>26 April 1986</u>:

01.24 h: Two explosions: (1) steam; (2) expansion of fission

Effects

- Cover of reactor vessel blown away,
- Entrance of air,
- Graphite + oxygen produces CO,
- CO ignites.

Following days:

- Fall-out of radioactive steam and particles.
- Spreading of radionuclides by explosions and fires.
- Remanent radioactivity produces so much heat that the fires cannot be extinguished.

The reactor after the accident

- 1. Topography
- 2. The reactor
- 3. The accident
- 4. Intermezzo: Natural radiation effects
- 5. Emission
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. Situation in the Netherlands and Europe

Physical variables and units

• <u>Activity</u> (desintegrations/sec)

• <u>Equivalent dose</u> (tissue; organs)

• [Bq] = [1/s]

•
$$[Sv] = [J/kg]$$

NB. J/kg = mJ/g

For biological effects: equivalent dose [Sv] is used

Normal background dose in the Netherlands (average):

- natural :
- medical diagnostical :
- total :

2.0 mSv/y

Netherlands: annual effective dose

RCGM SMETSERS - RO BLAAUBOER

Radiation from the soil

0.2 mSv/year

0.7 mSv/year

The Netherlands: Averaged natural background = 2.0 mSv/year.

Radiation from the soil

The Netherlands: Averaged natural background = 2.0 mSv/year; From soil: 0.2 mSv/y.

Europe Natural background

Eff. annual dose [mSv]

Effects of radiation

effect	probability	seriousness	dose	example
Stochastic (probabilistic)	dep. on dose (5 % per Sv)	100 %	all	Leukaemia, genetic (?)
Deterministic ("certain")	100 % , if > threshold	dep. on dose	> ≈ 1 Sv	See below

Deterministic effects: thresholds:	dose (Sv)	mortality
Cataract	> 0.5	
Temporary sterility	> 1	
"Bone marrow syndrome" (blood cells)	> 2	< 50% in <1 month
Radiation disease (nausea)	> 3	> 50% in <1 month
"Intestine syndrome"	> 10	< 1 week
"Central nerve system-syndrome"	> 50	< 1 day

NB. Natural background in the Netherlands: 2.6 mSv/y

Mortality (stochastic/probabilistic effects)

ICRP: death risk from cancer:		5 %
(whole population):		
		per Sv
The Netherlands	"Normal"	Extra (*)
(population 17 000 000 persons)		(Chernobyl)
Natural dose	2.0 mSv/y	0.1 mSv
 Medical/diagnostic dose 	0.6	-
Expected mortality (persons per year):		
Natural dose	1700 (0)	80
 Medical/diagnostic dose 	500	-

(*) Due to Chernobyl, first year only

(°) 17 000 000 x 0.002 Sv/y x 5 % per Sv = 1700 persons/year

Normal deaths per year: $17\ 000\ 000\ /\ 75 = 225\ 000$

Effects of radiation : stochastic/probabilistic effects

Decay effects of half-life time $T_{1/2}$

 ^{131}I : iodium-131 : $T_{1/2} = 8$ days

At 10 x $T_{1/2}$ (80 days; \approx 3 months) \rightarrow 1/1000 remaining At 20 x $T_{1/2}$ (160 days; \approx 6 months \rightarrow 1/1 000 000 remaining

- 1. Topography
- 2. The reactor
- 3. The accident
- 4. Intermezzo: Natural radiation effects
- 5. **Emission**
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. Situation in the Netherlands and Europe

Chernobyl: Emission of radioactivity (*)

Reference: natural radioactivity

Unit: 1 Becquerel [Bq] = 1 desintegration/sec

Compare:

- (bed)rock / soil : 600 Bq/kg
- human body: 55 Bq/kg Kalium-40 \Rightarrow 4 000 Bq @ 70 kg

Total emission: $190 \ge 10^{16} Bq =$ 1900 000 000 000 000 000 Bq

Suppose: deposited in a cone with opening angle 30^{0} and length 1500 km (\approx reality): Contamination : 3 MBq / m²

Compare: $1 \text{ MBq/m}^2 \rightarrow \text{extra life dose} \approx 120 \text{ mSv}$ (see below)

Normal in the Netherlands:

Natural background: 2.6 mSv/y; life dose = $2.6 \text{ x} 75 \approx 200 \text{ mSv}$

Wind-plume formation

Radioactive cloud as seen from above the North Pole

Total emission: major contributions

Isotope	Half-life time	Emission (10 ¹⁶ Bq)
Fissions products:		
¹³¹ I : iodium	8 d	150
¹³⁴ Cs : cesium	2 y	5
¹³⁷ Cs : cesium	30 y	9
¹³² Te : tellurium	3 d	10
Nobel gases (+)	5 d	6700
<u>Metals</u> (U, Pu, Sr, Np) $(^{0})$	2 d	1700

(+) largest contribution: ¹³³Xe : xenon
 (0) largest contribution: ²³⁹Np : neptunium;
 U : uranium, Pu : plutonium, Sr : strontium

- 1. Topography
- 2. The reactor
- 3. The accident
- 4. Intermezzo: Natural radiation effects
- 5. Emission
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. Situation in the Netherlands and Europe

Contaminated areas (mostly ¹³⁷Cs : $T_{1/2} = 30$ year):

- Soil surface contamination [MBq/m²] vs.
- Accumulated dose [mSv] in years 1986 2006.

(Compare: Life time dose in Netherlands : $\approx 2.6 \text{ mSv/y x 75 y} = 200 \text{ mSv}$; in Finland: $\approx 8 \text{ mSv/y x 75 y} = 600 \text{ mSv}$)

Europe

Eff. annual dose [mSv] (natural only; no medical/ diagnostics)

Extra dose in 1st year after Chernobyl accident

Zones around Chernobyl (1986) : cesium

Figure VII. Surface ground deposition of caesium-137 in the immediate vicinity of the Chernobyl reactor [I1, I24]. The distances of 30 km and 60 km from the nuclear power plant are indicated.

Zones around Chernobyl (1986)

Zone [MBq/m ²] (⁰)	Radius [km]	Area [km ²]	Extra Life dose [mSv]	Measures
> 1.5	30	3000	> 180	obligatory evacuation
0.5 - 1.5	30 - 60	7000	60 - 180	obligatory evacuation
0.2 - 0.5	60 - 100	19 000	25 - 60	voluntary evacuation
0.03 - 0.2	100 - 250	116 000	5 - 25	control area
Compare: the Netherlands (normal situation: 2.6 mSv/y)		39 000	Life dose: 200 (*)	milk and spinach

(⁰) : 1 MBq/m² \rightarrow extra life dose \approx 120 mSv (incl. decay).

(*): 200 mSv = 75 year @ 2.6 mSv/year

Persons involved

Persons involved	Number	Equiv. dose Number &		Extra
		[mSv]	Percentage	cancer
				risk (%)
"Liqvidators"	226 000	>1000	≈ 30 pers.	>5
(average dose		5001000	≈ 9000 (4 %)	2.55
= 100 mSv)		100500	≈ 22 000 (10 %)	0.52.5
		< 100	≈ 180 000 (80 %)	<0.5
Assisting persons	400 000	≈ 5		≈0.025
Evacuees	135 000	> 100	≈ 7000 (5 %)	>0.5
(average dose		50100	≈ 13 000 (10 %)	0.250.5
= 1.1 mSv)		< 50	≈ 110 000 (85 %)	<0.25

Extra cancer risk = 5 % per Sv Normal incidence: 20-30 %

Netherlands: background: 2.6 mSv/y ... : Life time dose: 200 mSv.

- 1. Topography
- 2. The reactor
- 3. The accident
- 4. Intermezzo: Natural radiation effects
- 5. Emission
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. Situation in the Netherlands and Europe

Persons involved: effects

During accident:	2 deaths
Acute hospitalization:	237 persons
Suffering from ARS (*):	134
Deceased in 1986:	28
Deceased 1987-2004: (⁰)	19
Alive in 2004:	190

(*) <u>ARS</u> : Acute Radiation Syndrome:	ARS: dose	Nr.
Nausea, diarrhea, haemorrhages,		persons
Temporary reduction of		41
immune system => fevers	< 2 SV	41
	24 Sv	39
(⁰) Various causes: about 30% heart, 30% liver	46 Sv	50
cirrhose, 10% morbid obesity, 10%	615 Sv	21
tuberculosis, 10% unknown		

Thyroid tumors in children

Average thyroid dose: 0.5 ± 0.4 Sv

(No extra effects in children born AFTER 1986)

Thyroid tumors

• Increase:	 from ≈1990, latent period ≈ 4 year ≈ 6000 cases until 1995, 20000 until 2017 predominantly: children born before 1986 25 % of all thyroid tumors attributable to radiation boys / girls : ≈ 7/10
• Probability:	 in most contaminated area (Gomel, Belarus): - 0-15 year: 4.5 x 10⁻⁶ (factor 8 x previous situation) ->15 year: factor 3 x before
• Treatment:	Medication and/or Thyroidectomie
• Problem:	- endemic iodine shortage (1/8 x normal)
	has stimulated intake enormously
• Deceased:	- until 1996: 3 persons
	- until 2002: 9 persons (+ 6 uncertain; other causes?)
	all others recovered or recovering.

(1996) "To date, only three children in the cohort of diagnosed cases have died of thyroid cancer. These post-Chernobyl papillary thyroid cancers in children ...appear to respond favourably to standard therapeutical procedures..." (98.9 % survival).

(2011) Total number of casualties in children due to thyroid cancer is about 15.

Leukaemia and other tumors: expected

Population	Number	Average	Solid t	umors	Leuka	emia	Tot	al
		dose (⁰)	Norm.	Extra	Norm.	Extra	Norm.	Extra
		[mSv]	(%)	(%)	(%)	(%)		
Liqvidators	200 000	100	24	1	0.4	0.1	50000	2200
Evacuees (<30 km)	135 000	10	24	0.1	0.3	0.01	40000	150
Inhabitants SCZ's (*)	270 000	50	24	0.5	0.3	0.04	60000	1500
total	600 000						150000	3850
Inhabitants	6.8	7	24	0.05	0.3	0.01	2.0	4080
other zones	million						million	
					grand	total		8000

(*) SCZ: severely contaminated zone

FdM

(°) Netherlands: 2.6 mSv/y; life time dose: 200 mSv.

Leukaemia and other tumors: observed

Observations until 2005:

Population of contaminated areas and Liquidators:

• Leukaemia and other tumors:

"extra" cases: number << "background" of normal incidence. "no increased risk for population has been found, so far" "slight indication of increased risk for "liqvidators", but latent period (≈ 20 years) has almost expired"

- Hereditary diseases:
- Malformations:
- Breast cancer:

idem

slight increase over 20 years, but not radiation-dependent slight increase, but relation with radiation level uncertain

"No consistent attributable increase has been detected either in the rate of leukaemia or in the incidence of any malignancies other than thyroid carcinoma" (UNSCEAR report).

Leukaemia and other tumors: latent period

Congenital malformations

Congenital malformations

Life time dose for population

Average life time dose [mSv]

Animals and Plants

• Animals (in 30 km-zone):

- cattle: thyroid problems
- frogs: 1/3 of eggs sterile (1.5 % in control group)
- morphological abnormalities: not significant
- from 1989: recuperation to "old" situation

• Plants (in 30 km-zone):

- trees (firs/birch): 40 % dead, 90 % damage
- morphological abnormalities: not significant
- from 1989: recuperation to "old" situation

Psychological / social effects for liqvidators and evacuees

- General increase of health complaints and symptomes, but independent of contamination level
- Problems due to evacuation: unemployment, alienation
- Personal problems: despair, hopelessness, uncertainty of future health.
- Disruption of society

- 1. Topography
- 2. The reactor
- 3. The accident
- 4. Intermezzo: Natural radiation effects
- 5. Emission
- 6. Radiation caused by the accident
- 7. Environmental and health effects
- 8. <u>Situation in the Netherlands and Europe</u>

Milk and Spinach in the Netherlands

Question : limit for consumption after soil contamination with ¹³¹I in milk and vegetables (representative example: spinach) (initial soil contamination max. 2-11 kBq/m²; normal 50 Bq/m²)

Criterion: integrated year-dose on thyroid in baby (highest risk) < 0.1 x yearly limit for population

	Limits	Official norm (May/Oct '86)	Actual values (May '86)
Milk [Bq/liter]	2300	500 / 125	50
Vegetables [Bq/kg]	6100	1300 / 250	150

NB. 131 I has half-life time = 8 days.

63

Statistical casualties over Europe

Inhabitants: 500 million (= 500 000 000)

Average one-time equivalent dose in 1986: 0.2 mSv (= 0.0002)

Cancer risk (stochastic range): 5 % per Sv (= 0.05 per Sv)

Expected extra casualties: **5000** (= 500 000 000 x 0.0002 x 0.05) (onetime; latent period 20-30 years)

Compare:

- Natural cancer casualties: 20 % => **100 million**, or

 $\approx 1\ 300\ 000\ /\ year$ (assume life time = 75 year)

- Natural radiation casualties @ 4 mSv / year (Europ. average): 100 000 / year

Overview attributable casualties

Casualties (1986 - 2011)		total
Observed:		
- During accident	2	
- Afterwards	47	
- Thyroid in children	15 - 20	
		pprox 70
Statistical casualties:		
- Directly involved (*)	pprox 4000	
- Other involved (⁰)	pprox 4000	
		pprox 8000
- Europe	pprox 5000	

(*) Liqvidators, Evacuees, Inhabitants SCZ (severely contaminated zones)

(⁰) Inhabitants other zones

the end