

Biol/edical Optics

1

New developments in Non-invasive Biomedical Optics

F.F.M. de Mul

University of Twente Department Applied Physics Enschede, the Netherlands

Non-invasive Biomedical Optics

- optical (or optically-based) techniques and instruments,
- to extract physiologically relevant information,
- from measuring physical quantities in tissue,
- in a non-invasive way, *i.e.* from the outside of the body,
- avoiding oppressing the patient ;
- quantities are:

optical or opto-acoustical characteristics of the tissue sample (scattering, absorption, fluorescence data, molecular composition (with Raman), or velocity of blood cells or temperature etc.)

Optical properties of tissue and blood

(Reduced) Scattering coefficient: • $\lambda = 580$ nm: Dermis: 3 mm⁻¹ Blood: 1 ... • $\lambda = 850$ nm: Dermis: 1 ... Blood: 0.5 ...

Non-invasive Biomedical Optics

In this talk:

□ <u>oximetry</u>

optical tomographic methods:

- 1. optical coherence tomography
- 2. orthogonal polarization spectral imaging
- 3. transillumination tomography:
 - time-of-flight, high-frequency modulation, continuous-wave
- 4. photoacoustics
- □ *dynamic scattering: laser-Doppler:*
 - 1. laser-Doppler perfusion monitoring and imaging
 - 2. self-mixing laser-Doppler blood flowmetry

Preferred wavelengths:

• 660 nm (red) ; ≈ 0 absorption by HbO₂

• 940 nm (IR) ; \approx equal absorption by Hb and HbO_2

Pulse oximetry:

measuring pulsatile and constant blood flow.

Contributions to absorption:

From pulsatile part of arterial blood

From arterial blood From venous blood

From tissue

Theory : Lambert - Beer law : $I(d) = I(0).\exp(-\mu_a d)$

$$\frac{\Delta I(d)}{I(d)} = \Delta \left(\frac{\ln I(d)}{I(0)}\right) = -\mu_a d \qquad \frac{\Delta I_R / I_R}{\Delta I_{IR} / I_{IR}} = \frac{\mu_{a,R}}{\mu_{a,IR}}$$

Experiment :

$$\frac{\Delta \ln I_R}{\Delta \ln I_{IR}} = \frac{\Delta I_R / I_R}{\Delta I_{IR} / I_{IR}} = \frac{(AC / DC)_R}{(AC / DC)_{IR}} = \frac{R}{IR}$$

$$\Rightarrow \frac{R}{IR} = \frac{\mu_{a,R}}{\mu_{a,IR}} = \frac{c_{Hb}}{c_{HbO_2} + kc_{Hb}} \quad ; \quad k \approx 1.$$

$$Sa_{O_2} = \frac{c_{HbO_2}}{c_{HbO_2} + c_{Hb}}$$

Reflection Pulse Oximetry Dual-wavelength probe (*)

Position of the probe at fetal head

(*) Courtesy: R. Graaff, Academic Hospital Groningen, Netherlands

Fetal scalp

Calibration against blood samples

Courtesy: R. Graaff, C. Dassel, Academic Hospital Groningen, Netherlands

Heart-cycle fluctuations in red vs. infrared signal, measured at index finger of healthy subject. Left vs. right panel: without / with pressure on the probe More "red" means: less saturation

Courtesy: R. Graaff, C. Dassel, Academic Hospital Groningen, Netherlands

Imaging methods for hidden structures in turbid media (tissue)

Non-invasive Biomedical Optics

In this talk:

- □ oximetry
- optical tomographic methods:
 - 1. <u>optical coherence tomography</u>
 - 2. orthogonal polarization spectral imaging
 - 3. transillumination tomography:
 - time-of-flight, high-frequency modulation, continuous-wave
 - 4. photoacoustics
 - dynamic scattering: laser-Doppler:
 - 1. laser-Doppler perfusion monitoring and imaging
 - 2. self-mixing laser-Doppler blood flowmetry

Interferometer

Wave package of a short-coherence light source

Interferometer setup:

- Detector will record only when signals from reference mirror and from sample overlap
- Scanning mirror enables depth resolution ($\approx 10 \ \mu m$)
- Maximum depth $\approx 1.0 \text{ mm}$

Thoracic Aorta

histology

(T. Van Leeuwen, Acad. Med. Centr. Amsterdam)

Lesion in intima vessel

Histology

Birefringe microscopy

OCT-image

(T. Van Leeuwen, Acad. Med. Centr. Amsterdam)

Rat Esophagus

Options :

- Color Doppler OCT (measures blood velocity profiles)
- Elastographic OCT (measures blood shear rates)
- Polarization OCT (measures birefringe effects in tissue layers)

Option: Color Doppler OCT measures velocity V_s of blood cells, flowing under angle θ with direction of incident laser beam

Doppler frequency = $\frac{2Vn\cos\theta}{\lambda}$

wavelength = λ medium : refract.index = n

Doppler frequency = frequency difference.

T. Van Leeuwen, Acad. Med. Centr. Amsterdam)

Doppler OCT in intact in vivo Hamster skin tissue

Non-invasive Biomedical Optics

In this talk:

- oximetry
- *optical tomographic methods:*
 - 1. optical coherence tomography
 - 2. <u>orthogonal polarization spectral imaging</u>
 - 3. transillumination tomography:
 - time-of-flight, high-frequency modulation, continuous-wave
 - 4. photoacoustics
- dynamic scattering: laser-Doppler:
 - 1. laser-Doppler perfusion monitoring and imaging
 - 2. self-mixing laser-Doppler blood flowmetry

Optical Tomographic Methods: 2. Orthogonal Polarization Spectral Imaging

Analyzer and polarizer orthogonal

About 10 scattering events needed for complete de-polarization.

Green light: preferentially absorbed in blood cells (=> shadow view)

View field $\approx 1 \text{ mm } \emptyset$

Maximum Depth $\approx 0.5 \text{ mm}$

Optical Tomographic Methods: 2. Orthogonal Polarization Spectral Imaging

Capillary structure from under tongue of healthy person.

(T. Van Leeuwen, Acad. Med. Centr. Amsterdam)

Optical Tomographic Methods: 2. Orthogonal Polarization Spectral Imaging

Rolling and sticking leukocytes

Mathura K and Ince C (2000) In: Prog. Appl. Microcirc., Ed. K. Messmer, Publ. Karger, Vol. 24

Non-invasive Biomedical Optics

In this talk:

- oximetry
- *optical tomographic methods:*
 - 1. optical coherence tomography
 - 2. orthogonal polarization spectral imaging
 - 3. <u>transillumination tomography:</u>
 - time-of-flight, high-frequency modulation, continuous-wave
 - 4. photoacoustics
 - dynamic scattering: laser-Doppler:
 - 1. laser-Doppler perfusion monitoring and imaging
 - 2. self-mixing laser-Doppler blood flowmetry

Time-of-flight: emerging photons delayed by scattering

Frequency modulation: phase lagging due to path length

Either the time-of-flight or the phase/modulation depth differences between the scattered signal and the reference signal are measured.

Light transport preferentially using glass fibers.

Optical Mammography using pulsed time-of-flight technique. Left: left breast with invasive ductal carcinoma and blood vessels; Right: healthy breast

(courtesy prof. H. Rinneberg, Physikalisch Technische Bundesanstalt Berlin)

Optical Mammography:

Patient \cdot 50 years old \cdot invasive ductal carcinoma

(pT2, G2) 4 x 4 x 2.5 cm³ ; cyst \emptyset 3 cm ; breast thickness 6.2 cm / 5.7 cm

courtesy prof. H. Rinneberg, Physikalisch Technische Bundesanstalt Berlin)

Diffusion theory:

homogeneous infinite slab with spherical inhomogenity

Fit to measured distributions

(10 distributions simultaneously)

Results: in tumor: absorption ≈ 2.5 x as high, scattering \approx tissue values (courtesy prof. H. Rinneberg, Physikalisch Technische Bundesanstalt Berlin)

Line scan across breast tumor

right breast

(total photon counts, corrected for edge effects)

Oxygen saturation in tissue

$$\mu_a = \left(c_{HbO_2}\varepsilon_{HbO_2} + c_{Hb}\varepsilon_{Hb}\right) \cdot \ln 10 + \kappa_{H_2O} \cdot \mu_{a,H_2O}$$

 $\rightarrow \geq 3$ wavelengths necessary, or ...

- 2 wavelengths (670 nm, 785 nm)
- assumption: $\kappa_{H2O} = 30 \%$
- slab with sphere $\rightarrow \mu_{a,tumor} (\lambda), \mu_{a,normal}(\lambda)$

$$S = \frac{c_{HbO_2}}{c_{Hb} + c_{HbO_2}}$$

(courtesy prof. H. Rinneberg, Physikalisch Technische Bundesanstalt Berlin)

High-frequency modulation provides phase and path information

Differences in composition of the tissue sample causes differences in phase $\Delta \phi$ as function of frequency

Actual accuracy at 100 MHz: 1 % in scattering \rightarrow 10-30 mM glucose Expected at 1 GHz: factor 10 better

High-frequency modulation provides phase and path information,

=> Scattering and absorption data => localisation of inhomogeneities

depth 2 mm

Frequency modulation:

Phased Array Detection

Dashed line: null-signal plane

Homogeneous sample: detectors no difference

Inhomogeneities present: phase difference detected

Phased-array breasts scan, showing presence of inhomogeneities (Courtesy: B. Chance, University of Pennsylvania, School of Medicine, Philadelphia, USA)

Functional Near-Infrared Imaging

Unlike with X-rays, Photon transillumination enables to measure in reflection, thus avoiding oppressing the patient

(Courtesy: B. Chance, University of Pennsylvania, School of Medicine, Philadelphia, USA)

Functional Near-Infrared Imaging

7 x 7 cm maps of the left motor cortex area during 20 sec finger tapping (rate 2 Hz)

In this talk:

- *oximetry*
- **o**ptical tomographic methods:
 - 1. optical coherence tomography
 - 2. orthogonal polarization spectral imaging
 - 3. transillumination tomography:
 - time-of-flight, high-frequency modulation, continuous-wave
 - 4. <u>photoacoustics</u>
- dynamic scattering: laser-Doppler:
 - 1. laser-Doppler perfusion monitoring and imaging
 - 2. self-mixing laser-Doppler blood flowmetry

- light pulse is absorbed in blood cell
- adiabatic heating
- pressure pulse emerging ($\approx 1500 \text{ m/s}$)
- detection at tissue surface

Depth:

- Green light: $\approx 0 9 \text{ mm}$
- Near-infrared: $\approx 0 30 \text{ mm}$

Depth resolution: $\approx 10 \ \mu m$

Bipolar PA-signal generated by a spherical Gaussian Source

$$\tau_a = \frac{R_\sigma}{v} \qquad \tau_e = \sqrt{\tau_a^2 + \tau_l^2}$$

$$P(r,t) = -P_{\max}(r)\sqrt{e} \frac{t-\tau}{\tau_e} \exp\left\{-\frac{1}{2}\frac{(t-\tau)}{\tau_e}\right\}$$

$$P_{\max}(r) = \frac{\beta E_{a}}{2\sqrt{e}(2\pi)^{3/2} c_{p} \tau_{e}^{2} r} \qquad \tau = \frac{r}{v}$$

A human hair in chicken breast tissue.

Depth: ≈ 6 mm (≈ 4 µs x 1500 m/s)

Vessels in chicken breast tissue

Sample : 5 mm thick chicken breast tissue in water Image : 663 mm, inside sample, 35 % isosurface threshold Vessels : 3 Nylon capillaries, 0.28 0.40 mm diameter Absorber : Evans Blue, flowing, a = 300 cm-1 Detection : at Z = 0 mm, 51 51 points, 0.15 mm spacing

Depth resolution: $\approx 10 \ \mu \text{ m}$

Vascular tree from a branching epigastric artery of a rat. Ex-vivo; medium: intralipid 1 % (\approx tissue). Depth (Z-coord.) \approx 5 mm : indicated in figure. Laser power 532 nm, 2mJ/pulse through fiber Ø 600 µm. Depth resolution / lateral resolution: 10 / 100 µm respectively.

Measuring tissue thickness above bone

Signal from Tissue Surface

Photoacoustic line scan of a finger, perpendicular to the finger axis.

The surface of the tissue and the reflection from the bone can clearly be distinguished.

In between structures are seen that may be blood vessels.

- 100 scan lines; scan step 150 μm
- $\sim 6 \text{ mJ/cm}^2$ at skin surface

Line scan across finger nail

1: nail top
 2: nail bottom
 3: finger skin
 4: reflections or
 blood vessels

	Green 550 nm		NIR 850 nm	
	dermis	blood	dermis	blood
 Absorption coefficient [1/mm] Scattering coefficient 	0.03	32	0.01	1.2
(reduced) [1/mm]	3	1	1	0.5
 Absorption Contrast 	1000		100	
Penetration into tissue [mm]	e ≈10		≈ 30	
 Applications 	Cutaneous perfusion Wound healing Diabetes Vascular malformations Skin tumours		Cerebral perfusion Muscular perfusion Mammography Angiogenese	

In this talk:

- *oximetry*
- **o**ptical tomographic methods:
 - 1. optical coherence tomography
 - 2. orthogonal polarization spectral imaging
 - 3. transillumination tomography:
 - time-of-flight, high-frequency modulation, continuous-wave
 - 4. photoacoustics
- dynamic scattering: laser-Doppler:
 - 1. <u>laser-Doppler perfusion monitoring and imaging</u>
 - 2. self-mixing laser-Doppler blood flowmetry

Dynamic scattering: 1. Laser Doppler Perfusion

Scattering at moving cells causes Doppler frequency shift

LD spectra of finger tip upon occlusion of upper arm

New in LD-monitoring:

- Pulsed LD-monitoring
- Depth-sensitive LD-monitor on-a-chip
- Standardization of instruments and procedures
- Low-coherent depth-sensitive LD-monitor

Pulsed LD-monitoring

- ➔ higher powers
- ➔ larger measuring distances
- → larger depths

LD-spectrum: 0-20 kHz Pulse frequency: 50 kHz. Pulse width / period = 0.24 (4.7 / 20)

LD-monitor on-a-chip

provides miniature depth-sensitive sensor.

Green: photodiode rows

Blue/red: *electronics*: amplifiers/multiplexers

Red dot in yellow area: VCSEL- laser diode

Low-coherent depth-sensitive LD-Monitoring

The reference mirror selects the depth in the sample from which a coherent Doppler-shift signal will be measured.

Monte-Carlo photon transport simulations

Tissue considered as

- Layered structure
- Including blocks, spheres, tubes, cones, mirror planes
- Varying scattering and absorption coefficients
- Varying scattering functions (Mie, Rayleigh,...)
- Reflection and refraction
- Rectangular or ring-shaped detectors
- Scattered, transmitted or absorbed photons detected
- Doppler spectra: varying velocity profiles

Superficial perfusion of the dorsal side of the hand,

characters UT written using muscular balm.

Upper left: perfusion, not normalized; Upper right: DC-reflection from tissue; Lower left: perfusion, normalized with DC Lower right: perfusion, normalized with DC².

Perfusion Image of a foot ulcer

Typically the highest perfusion is in the boundary around the ulcer, in inflammatory skin and in granulating tissue inside the ulcer area.

From: Bornmyr, "Laser Doppler flowmetry and imaging - methodological studies. Dep of clinical hysiology",thesis, Malmö, Sweden (1998); Figure: courtesy: prof. G. Nilsson, Lisca, Linkoping, Sweden)

Insertion of a microdialysis fibre into the skin. The dialysis fibre probe tip causes hyperperfusion

No hyperperfusion at the point of introduction because the skin is anesthetized.

The effect of micro-trauma

After 30 minutes the hyperperfusion is reduced.

(Courtesy: Lisca Sweden)

Basal cell carcinoma

Before treatment

After treatment Immediately

One week

(Courtesy: Lisca Sweden)

Neo-vascularisation in tumour area.

Inflammatory response.

Inflammatory response with excessive perfusion

Back to normal

Day 1: wound creation

(Courtesy: Lisca Sweden)

The healing process of a burn wound

Reduced perfusion in burnt areas. Increased perfusion in surrounding skin.

Towards normalisation.

In this talk:

- oximetry
- optical tomographic methods:
 - 1. optical coherence tomography
 - 2. orthogonal polarization spectral imaging
 - 3. transillumination tomography:
 - time-of-flight, high-frequency modulation, continuous-wave
 - 4. photoacoustics
- *dynamic scattering: laser-Doppler:*
 - 1. laser-Doppler perfusion monitoring and imaging
 - 2. <u>self-mixing laser-Doppler blood flowmetry</u>

Dynamic scattering: 2. Self-mixing Laser-Doppler Flowmetry

Principle:

- laser light reflected/scattered by moving blood cells,
- partly back-reflected into laser cavity,
- with Doppler-shifted frequency,
- in cavity: mixing with "original" light,
- Doppler signal results,
- can be measured with photodiode

Dynamic scattering: 2. Self-mixing Laser-Doppler Flowmetry

Cut-off frequency at 400 kHz corresponds with a velocity of 16 cm/s. (Independent measurement using an electromagnetic probe: 14.5 ± 1.0 cm/s) (L. Scalise & F.F.M. de Mul).

Imaging methods for hidden structures in turbid media (tissue)

C(M) : (confocal) microscopy **OCT:** optical coherence tomography **OPS:** orthogonal polarization spectral imaging PA: photoacoustics TOF: time-of-flight tomography FM: frequencymodulated tomography

Conclusions:

 several techniques available, at various depths, to 1 mm : OCT, OPS to 10 mm : PA – green to 50 mm : TOF, FM, PA-infrared.

• resolution / depth $\approx 1 / 10$ (with OCT, OPS, PA: 1/100)

In our lab (UT – Applied Physics – Biomedical Optics)

- Laser-Doppler Monitoring / Imaging
 - (chip design, calibration, speckle optics, low-coherence)
- Photon transillumination (...1.8 Ghz frequency modulation)
- Photo-acoustic imaging (blood in tissue -> mammography)
- Compound concentration determination by light scattering
- Monte-Carlo light transport simulations

the end