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Contents 

 

1. - General Introduction 

- Overview of existing techniques 

 

2. - Light scattering, theoretical background  

 - Monte-Carlo + numerical assignment 

- Photoacoustics 

 

3. Experimental: focus on some techniques: 

 - Laser-Doppler perfusion 

 - Self-mixing velocimetry 
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Contents: 

 

1. LD for  blood perfusion  
• Principles 

• Monitoring 

• Imaging 

2. Self-mixing LD 
• Principles 

• Experimental aspects 

• Flow velocities 

• Intra-arterial use 
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Principle of laser Doppler: 
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Normally in tissue:        is small : <cos  >  0.95      < 15º 

  approx.   k0 // v : only v-component   k0 measured 
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(A) Differential (Dual-beam) Laser Doppler Velocimetry 
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(A) Differential (Dual-beam) Laser Doppler Velocimetry 

Original frequency 

   [  1014 Hz] 

Doppler-shifted 

frequency 

 + D    [  1014 Hz] 

Doppler frequency 

D      [ < 20 kHz] 

Doppler intensity 

signal :  

   ~ (freq.sign)2 
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(B)  Laser Doppler Perfusion Velocimetry 

laser 

detector 
v 

0 

0  

Averaged Doppler frequency: 

Heterodyne mixing  

 =   - 0 

laser 

detector 
v 

0 

1 2 Homodyne mixing  

 = 1 - 2 

Averaging by:  - random velocities 

  - (multiple) scattering in random directions 
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(B)  Laser Doppler Perfusion Velocimetry 

0 D 

f(D) 

Doppler frequency spectrum 

Heterodyne 

 peak 

Heterodyne peak: due to large amount of non-Doppler shifted  

scattered photons. 

Doppler power spectrum 

0 D 

homodyne 

heterodyne 
S(D) 
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(B)  Laser Doppler Perfusion Velocimetry 

Doppler power spectrum 

0 D 

S(D) 

Larger v 

Larger c 

Power spectrum  

dependent  on:  

-   concentration c 

-   velocity v 
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(B)  Laser Doppler Perfusion Velocimetry 

Doppler power spectrum 

0 D 

S(D) 

Power spectrum dependent  on:  

-   concentration c 

-   velocity v 





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)(.

:spectrumPower  of Moments

 dSM n

n

Moments: 
n = 0 :  ~ concentration of moving scatterers 

n = 1 :  ~ flux of moving scatterers 

 

M1 / M0  : ~ velocity 
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(B)  Laser Doppler Perfusion Velocimetry 

Laser 

Photodiode 

fiber 
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(B) Laser Doppler Perfusion  

       Velocimetry 

Schematic cross section of  

Skin tissue 
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(B)  Laser Doppler Perfusion Velocimetry 

LD spectra of  

finger tip  

upon occlusion 

of upper arm 

Flux =  1st moment of power 

spectrum 

Concentration  
= 0th moment 

<velocity> = 

flux/concentration 

heart beat 

heart beat 

noise 

20 sec 

occlusion 
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(B)  Laser Doppler Perfusion Velocimetry: Instrument design 

laser detector 

v 

0  

glass fibers (a) Glass fibers for light 

transport  

v 

probe 
(b) Direct-contact velocimetry: 

Laser and detector in one probe 

Disadvantages: 

•  motional artefacts 

•  sensitive for local variations 

•  no motional artefacts 

•  local averaging 
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(B)  Laser Doppler Perfusion Velocimetry: Instrument design 

LD-monitor on-a-chip 

provides miniature depth-sensitive 

sensor. 

Green: photodiode rows 

 

Blue/red: electronics: 

amplifiers/multiplexers 

 

Red dot in yellow area: 

VCSEL- laser diode 
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(B)  Plastic and Reconstructive Surgery 

Replantation and  

Revascularization 
 

N=68 

Flaps: forearm, toe, 

thumb, lateral arm, 

fibula 

 

Effects after  

first half hour 

 

Courtesy: L. van Adrichem, University Hospital Rotterdam 

Resulting Inter- 

vention level  

(“alarm value”) 

= 10 
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(B)  Plastic and Reconstructive Surgery 

Courtesy: L. van Adrichem, University Hospital Rotterdam 

Specificity and 

Sensitivity  
of 

LD Perfusion flowmetry 

in the 

replantation/ 

revascularization 

group 

 

“alarm value”, 

intervention  

level 
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(B)  Plastic and Reconstructive Surgery 

Characteristics of 

Post-operative 

monitoring devices 
 

 

Courtesy: L. van Adrichem, University Hospital Rotterdam 

Figures: 

instruments read-out   

Red line:  

Intervention level 
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(B)  Plastic and Reconstructive Surgery 

Courtesy: L. van Adrichem, University Hospital Rotterdam 

Cigarette smoking: 

 
1. 

Effect on flow through 

healthy thumb. 

2. 

Effect on flow through 

replanted digit. 
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Post-Occlusive Reactive Hyperemia 
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Resting flux 

PORH occlusion 

Healthy person 
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2002-01-25_Reindert: Flux in Dorsum with Perimed0.25
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Diabetes Mellitus: 

Medium rise, low top 

Control group: 

Fast rise, high top 

PAOD: 

Slow rise, low top 
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Occlusion 

position 

Measurement 

position 

Leg arteries and veins 

Capillaries  

and shunts 

Leg arteries and veins: 

• Resistance R1 

• Capacitance or 

    compliance C1 

 

Capillaries/ shunts:   

• Resistance R2 .. R4 

• Capacitance or 

    compliance C2  

Model: jump-response 

after occlusion: 

R1 R2 

R3 R4 C1 C2 V1 V0 V2 
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PORH: 
Post-Occlusive Reactive Hyperemia 
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Model: jump-response after occlusion: 

R1 
R2 

R3 R4 
C1 C2 V1 V0 V2 

V = pressure  (voltage)  [N/m2] 

I  = flow  (current)    [m3/s] 

Q = volume (charge)    [m3] 

 

R = resistance = V / I   [Ns/m5] 

C = capacitance = Q / V  [m5/N] 

l =  length of tube 

r0 = radius 

 = viscosity  [Ns/m2] 

h = wall thickness  

E = Young’s modulus [N/m2]  

RC- circuits behave in time like : exp(-t / ): 
with characteristic time constant  . 
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Model: jump-response after occlusion: 

R1 R2 

R3 R4 C1 C2 V1 V0 V2 

Exact model:  

 

Measured perfusion: 

Current I  through R2. 

Approximation:  R4 >> R1 .. R3  (no shunts before entrance in capillary bed) 

                     R1 C1 << (R2 + R3 ) C2   (leg filled much faster than capillaries) 

 
MR = ratio of 

maximum and  

resting flux 
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Model: jump-response after occlusion: 

R1 R2 

R3 R4 C1 C2 V1 V0 V2 

Measured perfusion: 

Current I  through R2. 

Approximation:  R4 >> R1 .. R3  (no shunts before entrance in capillary bed) 

                     R1 C1 << (R2 + R3 ) C2   (leg filled much faster than capillaries) 

 
MR = ratio of 

maximum and  

resting flux 
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Model: jump-response after occlusion: 

Approximation: 

Measured perfusion: 

Current I  through R2. 

t 

1 

0 

MR 

e -t/τ1 

1-e-t/τ1 

Assume:  τ1 << τ2 

1+(MR-1) e-t/τ2 

I 



BioMedical Optics Post-Occlusive Reactive Hyperemia 

FdM 27 

Exact model Approximation 
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tR tM tH M/R 

PAOD 6.5 58 149 3.1 

Controls <0.5 24 74 5.8 
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R 

M 

H 

0 

Conclusions from the model: 

(times in sec) 

PAOD-patients react much slower after occlusion. 

Their reaction amplitude is smaller. 

(PAOD = post arterial-occlusion disease) 
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tissue 

Probe with 

channel for 

drug delivery 

Measured: 

Influence of drug delivery on flow. 

Amp-meter measures amount of injected molecules. 

 

Measure for diffusion coefficient of drug in tissue. 

Fibers to LDF instrument 

electrode 

A 
Ampère-meter 
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Measured: 

Influence of drug delivery on flow. 

Amp-meter measures amount of injected molecules. 

 

Measure for diffusion coefficient of drug in tissue. 

Example:  

Women with pre-eclampsia (pregnancy poisoning): 

- hypertension, proteinuria, oedema, 

- due to endothelial dysfunction, changes in vascular reactivity and  

  permeability for macromolecules 

  

Vasodilatation can be enforced by drugs:  

- endothelial-dependent drugs: acetylcholine 

- endothelial-independent drugs: nitroprusside 

 

Question: relation between flow change and drug delivery. 
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Sponge pad 

LDF-probe  

(reference) 

LDF-probe 

(measurement) 
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Clinical applications (3): Iontophoresis 

Compounds in iontophoresis Activity 

Capsaicin Neuropeptides 

(Nor)epinephrine hydrochloride Vasoconstrictor 

Sodium nitroprusside Vasodilator, to smooth muscle walls 

Acetylcholin chloride Vasodilator, activating endothelial 

vessel cells 

Histamine Oedema and vasodilation 

FdM 32 
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Time (sec) Time (sec) 

Acetylcholin chloride Sodium nitroprusside 

5 Shots: Start  ( ↓ )  at 600 sec, duration 20 sec each, intervals 90 sec 

              End ( ↑ )  at 960 sec 

At end of recording: arterial occlusion. 

Shown signal = measuring probe – reference probe 

Acetylcholine washes out faster, due to vasodilation, 

especially with women with pre-eclampsia.   
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1. 1-Dimensional diffusion : c = concentration 
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3. Assume:   N shots with  interval t 

s = shot saturation constant; 

      if  s = 0: all shots contribute equally 

      if  s >>1: only first shot contributes 

D = diffusion 

constant 

 = decay 

constant 
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Fit results (2 Pre-eclampsia patients; SNP-administration): 

9 shots; 90 sec. apart. 

Parameters:  χ2red = 1.15; 1 = 76 ± 10 s ;  2 = 408 ± 30 s ; s = 0.029 ± 0.014 

      χ2red = 1.90; 1 = 65 ± 12 s ;  2 = 252 ± 30 s ; s = 0.048 ± 0.028  
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Principle: 
 

• laser light reflected/scattered 

by moving blood cells, 

 

• partly back-reflected into laser cavity, 

 

• with Doppler-shifted  frequency, 

 

• in cavity: mixing with “original” light, 

 

• Doppler signal results, 

 

• can be measured with photodiode 

(C)  Self-mixing Laser Doppler Velocimetry: Principle 

  

Laser diode   

Optical    fiber   

Photodiode   

Moving cell   

Velocity 
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(C)  Self-mixing Laser Doppler Velocimetry: Principle 

Five-mirror setup:  

-  M1 and M2 : facets of laser crystal 

-  M3 and M4 : facets of fiber 

-  M5 : reflection at / scattering in moving object MO 

MO: moving object 

L1 and L2 : lenses 

DL: diode laser + 

   photodiode 

M1 M2 M3 M4 M5 

fiber 
L1 DL L2 

MO 
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(C)  Self-mixing Laser Doppler Velocimetry: Principle 

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

a
m

p
li
tu

d
e

, 
[m

V
]

time, [s]

0 20 40 60 80 100

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 R rotating wheel

 NR non rotating wheel

fr
e
q
u
e
n

c
y
 s

p
e
c
tr

u
m

, 
[m

V
]

frequency, [kHz]

Time signal Frequency signal 

R 

NR 



BioMedical Optics SM-LDV: Self-mixing (4) 

FdM 39 

(C) Self-mixing Laser Doppler Velocimetry:  

 Filter for directly reflected light 

Reflected light will not be focussed onto laser crystal facet. 

Only light returning through the fiber will be fed back into the laser cavity. 

Laser  

facet 

No filter 
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(C)  Self-mixing Laser Doppler Velocimetry 
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Liquid flow: Cut-off frequency  

provides maximum flow velocity 
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(C)  Self-mixing Laser Doppler Velocimetry 
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Iliac 

artery 

Optical 

fiber 

Catheter 

Basket  

Branching in iliac artery of healthy pig 

Cut-off frequency at 400 kHz corresponds with a velocity of 16 cm/s. 

(Independent measurement using an electromagnetic probe: 14.5  1.0 cm/s)( 

Flow – no flow 

Cut-off frequency 
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laser 

detector 

monitoring 

fibers 
laser 

detector 

Scanning mirror 

imaging 

Scattering at moving cells causes Doppler frequency shift 
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Superficial perfusion of the 

dorsal side of the hand,  

 

characters  UT written using 

muscular balm.  

 

Upper left: perfusion, not  

     normalized; 

Upper right: DC-reflection 

     from tissue; 

Lower left: perfusion,    

     normalized with DC 

Lower right: perfusion, 

     normalized with DC2 . 
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Laser Doppler Perfusion (Imaging) 
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From: Bornmyr, “Laser Doppler flowmetry and imaging - methodological studies. 

Dep of clinical hysiology”,thesis, Malmö, Sweden (1998); 

Figure: courtesy: prof. G. Nilsson, Lisca, Linkoping, Sweden) 

Typically the highest perfusion is in the boundary around 

the ulcer, in inflammatory skin and in granulating tissue 

inside the ulcer area. 

Perfusion Image of a foot ulcer 
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Laser Doppler Perfusion (Imaging) 
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The effect of micro-trauma 

Insertion of a micro- 

dialysis fibre into the 

skin. 

The dialysis fibre 

probe tip causes 

hyperperfusion 

No hyperperfusion 

at the point of 

introduction because 

the skin is anesthetized. 

After 30 minutes the 

hyperperfusion is reduced. 

(Courtesy: Lisca Sweden) 
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Laser Doppler Perfusion (Imaging) 
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(Courtesy: Lisca Sweden) 

Before treatment         After treatment 

Immediately                   One week                     8.5 months later 

Neo-vascularisation 

in tumour area. 

Inflammatory  

response. 
Inflammatory response 

with excessive perfusion. 
Back to normal. 

Basal cell carcinoma 
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Flow-Maps of a 

Healing Wound 

Day 1: wound creation 

Day 4 

Day 7 

Day 10 

Day 13 

Black inc  

marker on skin 

Crust formation 

in centre of wound Crust off 
Perfusion returning 

to normal  
(Courtesy: Lisca Sweden) 
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Laser Doppler Perfusion (Imaging) 
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Day 2 

Reduced perfusion 

in burnt areas. 

Increased perfusion 

in surrounding skin. 

Towards normalisation. 

Day 13 
Day 28 

The healing process of a burn wound 

(Courtesy: Lisca Sweden) 
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New developments 
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Low-coherent depth-sensitive LD-Monitoring 
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The reference mirror selects the depth in the sample from which a coherent Doppler-

shift signal will be measured. 
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New developments: 
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Imaging using CMOS camera 
 

to PC 

CMOS 

camera 

lens 

scattered light 

sample 

HeNe laser 

illuminating beam 

Remarks: 
- Beam diameter on the sample.....5 cm 

- Sample-to-camera distance..........60cm 

Advantage of CMOS over CCD camera: 

CCD: serial read-out of collected photons 

        using shift registers 

         => slow read-out 

         => no dynamic response possible 

CMOS: each pixel can be addressed separately, 

        enables fast dynamic 2D-response 

Advantage of CMOS over scanning detector: 

Scanning detector: 

  = measures dynamic signal 

  = slow imaging due to scanning 
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Laser Doppler Perfusion (Imaging) 
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New development: 

Imaging using CMOS camera  

 

Sample : Plastic box with 4 cylindrical holes  

filled with Intralipid™ (moving particles) 

3
5

 m
m

 

Full frame 

Moving particles concentration, a.u. 

0 255 

Original False-color Smoothed 
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New development: 

Imaging using CMOS camera  

 

Occlusion 

After 

image processing 

Before 

image processing 

No occlusion 

Moving  blood cells concentration, a.u. 

0 255 
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The End 

Summary: 

 

1. LD for  blood perfusion  
• Principles 

• Monitoring 

• Imaging 

2. Self-mixing LD 
• Principles 

• Experimental aspects 

• Flow velocities 

• Intra-arterial use 


