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Abstract. 
 
The physics behind the simulation program developed in our group is explained. The various options 

for light transport and scattering, reflection and refraction at boundaries, light sources and detection, and 

output are described. In addition, some special features, like Laser Doppler velocimetry, Photoacoustics 

and Frequency-modulation scattering, are described. 
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1.   Introduction. 
 
In the past decades, much effort has been devoted to the elucidation of the optical properties of turbid 

media, especially tissue, from human and animal origin. This is worthwhile since these properties can 

reveal data and conclusions about the physiological condition of the tissue. These optical properties are 

the scattering and absorption characteristics, both as a function of position in the tissue and as a function 

of time, e.g. after administration of drugs, hydrogenation or temperature treatment. In addition, the 

spectroscopic response of the tissue (e.g. Raman-spectroscopy, induced or auto-fluorescence, absorption 

spectroscopy) can be of interest to obtain useful information. 

 

Typical experiments to extract values for the optical properties of tissue are: measuring the response of 

the tissue upon a stimulus from the outside. In the optical case, this mostly corresponds with measuring 

the properties of light (e.g. intensity) or of another suitable variable (e.g. sound, with photoacoustics) 

that will emerge from the tissue, as a function of the distance from the point of entrance of the light, or 

will pass through the tissue and eventually will appear at the backside of the sample.  

 

In the case of “light in – light out” several interesting methods have been developed in addition to simple 

intensity measurements. Among those are “Frequency-Modulation” of the light, enabling to measure 

the phase delay upon passage through the sample, or “Optical Coherence Tomography”, where single-

scattered light is detected interferometrically.  

 

In order to extract the optical properties from the measured data, it is necessary to have suitable 

analytical models relating those properties with general ideas about the physics of the light transport in 

tissue. The best models for this purpose rely on the Radiative Transfer Equation (RTE; also known from 

disciplines as Neutron Physics) and the Diffusion Approximation (DA) derived from it 1,2,3. The RTE 

describes the light transport in turbid media in the form of an integro-differential equation of the (place-

time-dependent) radiance, arising from well-defined sources and subject to scattering and absorption. 

The DA takes into account that in tissue most scattering is predominantly in forward direction. Then the 

light fluence is divided into two contributions: an isotropic term and a term describing the forward 

contribution. Several authors 4 -  10 have published sophisticated models for two- and even three-layered 

samples. For inhomogeneous samples, the models soon become very complex and difficult to apply, 

and the number of variables to be used in fitting to the experimental data will soon grow beyond 

manageability.  

 

Therefore, it turns out to be very difficult to produce tractable analytical models of the transport of light 

in those media, necessary to extract values for the optical properties from experimental data, especially 

when those media are more complex than homogeneous semi-infinite layers. This is the case with two- 

or three layered samples, or when deviant structures, like vessels or plates, are present in those layers. 

Especially in those cases, Monte-Carlo simulations of the light transport will be of help. 

 

In Monte-Carlo simulations, a completely different approach is followed. The light transport in tissue is 

described in the form of separate photons travelling through the sample. On its way, the photon might 

be scattered at (or in) particles, by which the direction of the photon is changed, or the photon is 

absorbed. The scattering phenomenon will be determined by suitable angle-dependent scattering 

functions. When a boundary between two layers, or between the sample and the surrounding medium, 

or between an internal structure and the surrounding layer, is encountered, the photon might be reflected 

or refracted. This is determined by the well-known Fresnel relations. In between these events, the photon 

will propagate, and the optical mean free path in that part of the sample will determine the length of the 
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propagation path. The actual length of the contributions to the path, the angles of scattering, the choice 

between scattering and absorption, and between reflection and refraction, are determined by random 

number-based decisions. 

 

Some extra features can be applied to the photons. For instance, photons can be thought of as scattering 

at particles at rest or at moving particles. This effect will cause a Doppler shift in the frequency of the 

photons, which can be registered. Afterwards from the Doppler shift distribution of all suitably detected 

photons the Frequency Power distribution can be derived. Several models are present for this velocity 

shift: unidirectional or random flow, various flow profiles and so on. Another option is to use as the 

light source not a beam impinging from the outside world, but a photon absorption distribution inside 

the sample. In this way, fluorescence or Raman scattering can be mimicked. 

When recording the path of the photons through the sample, one might deduce the path length 

distribution, and from that the time-of-flight distribution. The latter can be used to predict the 

distributions of phase delays and modulation depths encountered when performing frequency-

modulation experiments. 

Further, the distribution of positions where photons were absorbed can be used as the distribution of 

sources for calculating the photoacoustic response, to be detected using suitable detector elements (or 

groups of elements, to take interference effects into account) at the surface of the sample. 

 

With these applications in mind, we developed 11,12 our Monte-Carlo light simulation package. 
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2. General outline of the program. 
 

We decided to build the package in a modular and self-explaining form, in the sense that all necessary 

input to run the simulations can be produced within the program itself. In addition, the output – in the 

form of parameter plots and other visualisations – can be obtained using the same program. 

 

In overview, the program package consists of following parts: 

• Calculation of angle-dependent scattering functions for all types of particles; 

• Definition of the light source, either a pencil beam or a broad divergent beam or an internal source; 

• The sample system, consisting or one or more layers with different contents, with different optical 

characteristics and velocity profiles; The contents may consist of “objects”: (arrays of) cylinders, 

spheres, cones, rectangular blocks, and mirrors. See Fig .1. 

• Definition of the detection system, consisting of a poly-element detection window, and of its 

numerical aperture; 

• Definition of the calculation mode: e.g. reflection or transmission, or absorption, or a combination 

of those. 

• The simulation part, in which a preset amount of photons is injected in the sample and followed 

along their paths, until either detection or absorption; 

• The analysing part, in which parameter plots can be produced and statistics can be calculated. 

• Extra features, like Laser Doppler flowmetry, Photoacoustics and Frequency modulation. 

These parts will be detailed in following sections. 

 

Fig. 1. Structure plot of a two-layer system with a horizontal cylindrical tube and a sphere (see 

section 2), filled with various concentrations of scattering/absorbing particles. Laser light (here 

diverging beam) injected around Z-axis.. 
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3. Transport Algorithms. 
 
In order to describe the transport of photons through the sample, one needs algorithms for the various 

events that the photon may encounter. Those are: scattering or absorption, reflection or refraction at 

boundaries, and detection. In addition, a mechanism accounting for the destruction of irrelevant photons 

(e.g. photons that have travelled extremely far from the detection window) should be available. 

 
We start with defining the basic optical properties relevant for this problem: 

• sv : scattering cross section [m2] of particle type v ; 

• av : absorption cross section [m2] of particle type v ; 

• tv : total cross section = sv+ av  [m2] of particle type v ; 

• av : albedo ( = sv / tv) of particle type v ; 

• clv : concentration [particles/mm-3] of particle type v in layer l (or “object” l); 

• sl : scattering coefficient [mm-1] of layer l (or “object” l) ; 

• al : absorption coefficient [mm-1] of layer l (or “object” l) ; 

All internal structures in a layer (vessels, tubes, blocks, mirrors, spheres, cones…) will further be 

denoted as “objects”. 

 

So the probability flv to find a particle of type v in layer (or object) l is 

 

 


=

v

tvlv

tvlv
lv

c

c
f




.       (3.1) 

There are two basic algorithms for handling non-zero absorption in layers or particles. Frequently the 

probability of absorption (given by 1 – av ) is taken into account as a “weight factor” for the photon. The 

cumulative effect of applying these subsequent factors at each scattering event will reduce its overall 

weight in calculating averages of relevant variables (such as intensity) over a set of emerged photons. 

An example is the work of Wang and Jacques 13. An advantage is that no photons will be lost by 

absorption, which can be of importance when the absorption is relatively strong. 

Another algorithm does not make use of weight factors, but applies a “sudden death”-method: the photon 

is considered to be completely absorbed at once, and will thus be removed from the calculation process. 

This method might be a bit more time consuming, especially when absorption is not very low in a relative 

sense, but it offers the advantage to study the positions where the photons actually are absorbed. In this 

way extra features like photoacoustics or fluorescence response can be studied. 

In view of this option, we have chosen for the second method. 

The general laboratory coordinate system is chosen as shown in Fig. 2. 

+Z 

-Z 

X Y 
Layer 1 

 

Layer 2 

Fig. 2. The laboratory coordinate system. The +Z-axis is chosen as pointing 

inward. The arrow indicates the default direction of a pencil laser beam. 
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3.1. Propagation. 
 

Here we will describe the algorithm used for propagation. Also the correction to be made upon crossing 

an interface (between different layers, or between a layer and a “object”, or between a layer or object 

and the outside world) will be handled. 

 

We may write down the average translation distance for a photon in a layer or object l with scattering 

particles of varying type, in the case of no absorption by that layer or object itself, as 

 


=

v

tvlv

l
c

L


1
 .        (3.2) 

 

From this we deduce the expression for calculating the actual path length p: 

 

 )1ln(. RLp l −−= ,        (3.3) 

 

where R is a random number ( 0  R < 1) and we have used for the probability fsl to arrive at a path 

length p: 

 

 )/exp(1 lsl Lpf −−=  .       (3.4) 

  

The expression with ln (1-R) is chosen to avoid the singularity in case R should equal 0. However, this 

path might end prematurely when an boundary at an interface is met. In this case we can geometrically 

calculate a path fraction fp , using the distance between the previous event point and the intersection 

point of the path with the interface, and define the “effective path” peff , by 

 

 pfp peff = . .         (3.5) 

 

In case fp < 1, the path will partially stretch out into the medium at the other side of the interface. When 

dealing with this part of the path, it should be kept in mind that it has to be corrected in length according 

to the mean free path for the photons in the two media. See below for a full account. 

 

Now we can define the probability fal for absorption by the medium l (layer or object) before the photon 

has reached the end of path peff: 

 

 ).exp(1 effalal pf −−=  .       (3.6) 

 

This probability will lie between 0 and 1. Now we choose a fresh random number R. There are two 

possibilities:  

• If this R is smaller than fal , then absorption has occurred during path peff . 

• It this is not the case, then absorption will occur within the particle at the end of path peff when  

vlaR −1  ,         (3.7) 

where R again is a fresh random number. If eq.(3.7) is not fulfilled, then the photon will be scattered. 

 

Since we handle the absorption by the particles in the medium as taking place within the particles 

themselves, and the absorption by the medium itself separately, we can define the “average translation 

length” Ltrans,l for medium l : 



 

 

8 

 

 

1

,

−









+= 

v

svlvalltrans cL   ,      (3.8) 

 

and the “average absorption length” Labs,l caused by the medium and the scatterers in that medium: 

 

1

,

−









+= 

v

avlvallabs cL   .      (3.9) 

 

Now we can correct eq. (3.3) and subsequent expressions for absorption, and find for the path with 

length p: 

 

 )1ln(., RLp ltrans −−=         (3.10) 

 

In a previous paper 14 we discussed two equivalent algorithms to determine the remaining path length 

after crossing an interface.  

In Fig.3 we present a view of a running simulation in a sample with two layers and two “objects”. 

 

 
Fig. 3. Running graphics of the simulation process of the structure of fig.1.  

View in YZ-plane. Photons entering around pos (0,0,0). The tube (X-direction) and sphere can 

be seen. 

 

3.2. Scattering. 
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In case the photon is not absorbed during or at the end of a translation step, the photon will be scattered.  

We define the angle  as the polar angle of scattering, with the direction of the previous translation step 

as the Z-axis of the local coordinate system. For natural (unpolarized) light, the X-axis can be chosen at 

random in the plane perpendicular to the Z-axis (see Fig.4). For polarized light, the directions of the X- 

and Y-axes are determined by the polarization state of the incoming photon. 

 

 The probability of scattering to the direction given by the angles  and  is described by the scattering 

function p(,). This function is normalized in such a way that the total scattering over the whole 4 

solid angle is unity: 

 

  =

 


2

0 0

1sin),(.pdd        (3.11) 

  

 

 

For the scattering function, several models are available: Dipole- or Rayleigh-scattering, Rayleigh-Gans 

scattering. Mie scattering, isotropic or peaked-forward scattering. These scattering functions have been 

described in many textbooks. We refer here to the standard books of Van de Hulst.15 They will be dealt 

with in detail in section 4. 

 

The standard method of determining the scattering angles  and  is as follows: 

• The azimuthal angle  is given by : 

 

 2.R=          (3.12) 

 

• For the polar angle  a normalised cumulative function C(,) (“Look-up table”) is constructed: 

 

==









0

''.sin).,'(),('with
),('

),('
),( dpC

C

C
C ,   (3.13) 

 

and the angle  is obtained by taking a fresh random number R and determining the angle for 

which  

 

RC =),(   .        (3.14) 

 

Zs 

Xs 

Ys 

 

 

 k0 

ks 

Fig.4. Basic scattering geometry in the “scattering system” (subscript s). The 

incoming and scattered wavevectors are denoted by k0 and ks respectively. | k | = 

2/, with  = vacuum / n  (n = refractive index of the medium). 
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The determination of  can be done by interpolation in the “Look-up table”, or by constructing the 

inverse cumulative function, e.g. using a polynomial approximation. However, as we will see in section 

4, most relevant scattering functions decrease sharply for small angles, and then a simple polynomial 

approximation will not suffice. Since these small angles will occur frequently, an interpolation 

procedure will be more accurate. (In the program, we have adopted this option).  

 

In case polarization effects have to be taken into account, the choice of the angles  and   is coupled to 

the polarization state of the photon. We will deal with polarization in subsection 3.7. 

 

In order to connect the local “scattering coordinate frame” with the “laboratory coordinate frame”, we 

use Fig. 5. 

 
The connection between the S-system and the L-system is constructed in three steps: 

 

SS

SS

S

SL

SL

S

0

0

S
zy

zy
x;

zz

zz
y;

k

k
z




=




== )3()2()1(   (3.15) 

This means that  

 

   cossin.sinsin.cos SSSSS zyxkk ++= .    (3.16) 

 

The length of ks is determined by the local wavelength, as 2/local. With this, the scattered wavevector 

is fixed in the laboratory frame. 

 

In the program the unit vector, along the scattered wave vector, and expressed in the laboratory frame 

vectors, is updated at each event in which the photon direction is changed. 

 

3.3. Layers and Objects; Boundaries. 

 
Since the program allows for insertion of special structures, like tubes, spheres, mirrors and cones in the 

layer system, we have to deal with boundaries at flat surfaces (like those between layers) and at curved 

surfaces. 

This subsection contains: 

(a) Flat surfaces perpendicular to the Z-axis. 

(b) Curved surfaces, or flat surfaces not perpendicular to the Z-axis. 

Z

XL 

YL 

 k0 

 ks 

XS 

YS 

YS 
 

ZS 

Fig. 5. Relation between the laboratory frame (subscript L) and the local scattering 

frame (subscript S). The circle indicates the set of possible vector directions for fixed 

 and random . 
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(c) An oblique cylinder.   

(d) Cylinders parallel to the surface. 

(e) Cylinders parallel to the Z-axis, perpendicular to the surface. 

(f) Spheres and Droplets. 

(g) Rectangular blocks. 

(h) Cones. 

(i) Mirrors. 

(j) Torusses. 
(k) Lenses. 

(l) Pupils (diaphragms). 

(m) Entrance in an object. 
 

(a) Flat surfaces perpendicular to the Z-axis. 

 

In this situation, the calculation of reflection or refraction angles is relatively simple: according to Snell’s 

Law: 

 

2

1

1

2
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n

n
=




,         (3.17) 

 

where  and n denote the angles with the surface normal and the refractive indices in the two media 1 

and 2 respectively. See Fig. 6. 

 

The fraction of reflected light is given by the Fresnel relations: 
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Reflection takes place if a fresh random number R < RF (1), and refraction otherwise. 

n 
 k1,z 

 k2,z 

 k2 

 k1 

1 

2 

 k3 3 

Fig. 6. Reflection or refraction at interfaces. Here the k-vectors denote unit 

vectors, and n is the unit vector perpendicular to the surface. 3 = 1. 
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New unit vectors are calculated according to (see fig. 4): 

 

 k1,z = cos 1 (-n) ;  k1,⊥ = k1 – k1,z ; 

k2,z = cos 2 (-n) ; k2,⊥ = (n1/n2) k1,⊥  ;     (3.19) 

k3,z  = - k1,z ;  k3,⊥ = k1, ⊥ . 

 

Here the symbol ⊥ stands for the vector component parallel to the surface. 

 

(b) Curved surfaces, or flat surfaces not perpendicular to the Z-axis. 

 

For the general case of interfaces with a curved surface, at first a new coordinate frame is constructed 

as follows (see Figs. 6 and 7): 

 

'ˆ'ˆ'ˆ

/)('ˆ

'ˆ

11
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        (3.20) 

 
Then the new vectors for refraction and reflection are found to be 
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    (3.21) 

 

and 1 and 2 are given by Snell’s relation (eq.(3.17)). 

 

We will now deal with the geometry of how to determine the intersection points and normal vectors 

with special cases of curved surfaces. 

 

(c) An oblique cylinder. 

 

See Fig. 8. The point O’ represents a point on the symmetry axis. Vector b is the direction vector (unit 

vector) and vector r points to the surface points. 

  

 

k1 
 

 

M 

Fig. 7. Coordinate frame at curved surfaces. Vectors x’ and y’ are directed along the 

surface.  M is the centre point (or the point where the normal vector n intersects the 

symmetry axis) of the structure (tube, sphere, etc…). 
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The general equation for such a cylinder is 

 

R=•− bbrr )( ,        (3.22a) 

 

which in fact is a quadratic equation in the coordinates of the cylinder wall points: 

 

( ) ( ) 22222 Rzbybxbzyx zyx =++−++ .     (3.22b) 

 

The vector expression between the absolute bars represents the direction of the normal vector on the 

surface at point r. 

Let vectors p0 , p and p  denote the “old” , “new” position of the photon, p = p – p0 the path length 

vector, as determined in section 3.1., respectively, and p0’ and p’  the same vectors in the internal frame 

of the cylinder (p0’ = p0 – r0 and p’ = p – r0 ). Then the crossing point pS with the interface is given by 

insertion of 

 

Δppp 0 .'' +=          (3.23) 

 

as the vector r  into eq. (3.22). Of the two resulting values of  only those between 0 and 1 are acceptable. 

The smallest of those -value(s) determines the intersection point pS.  

In the following, we will use those primed vectors to indicate positions relative to the internal origin 

point of the object (tube, sphere, cone….). 

 

(d) Cylinders parallel to the surface. 

 

As an example, we will discuss here the case of a straight cylinder parallel to the Y-axis. Insertion of 

eq. (3.23) into eq. (3.22) leads to 

 

      22

,0

2

,0,0,0

222 )'()'(.'.'2)()( Rppzpxpzx zxzx =+++++  , (3.24) 

 

where x, y and z are the components of p.  

In general this equation will have two -roots, with in order to be valid intersection points should be 

real numbers between 0 and 1. Let us denote these with m and M, with m < M. The -value for the 

intersection point will be equal to m if 0 < m < 1 and p0 is outside the cylinder, and to M if 0 < M < 

1 and p0 is inside the cylinder (in that case m < 0) respectively. See Fig. 9 for a clarification. 

R 

O 

O’ 

r0 

r 

b 

Fig. 8. Vectors for an oblique cylinder. R is the radius and b is the direction vector. 

r directs to a point at the surface. 



 

 

14 

 

The direction of the normal vector nS on the cylinder surface at the intersection point is given by  

 

( )zzSxxSS rprp ,0,,0, ,0,// −−n  .      (3.25) 

 

Similar expressions can be formulated for cylinders parallel to the X-axis. In the program both X- and 

Y-cylinders have infinite length. For cylinders parallel to the Z-axis one also has to take into account 

that those cylinders may have cover lids and bottom at an interface between layers or with the surface. 

We will deal with that shortly. 

 

Now we will discuss the option of more than one cylinder, in the form of linear arrays of those cylinders. 

This means that the program can handle an infinite number of cylinders, arranged next to each other, 

with constant spacing distance, as is shown in Fig. 10. 

We denote the position vectors p0’ and p’ with respect to the internal frame of the generating cylinder 

(located at the origin of the “rel”-frame). The repetition distance is d and the radius is R. The generating 

cylinder has tube number tn = 0; the adjacent tubes have numbers tn = +1, +2 … and –1, -2… for tubes 

at the right and left sides respectively. 

For the determination of intersections points we take following reasoning: 

• Will the path contain points with  -R < zrel < +R ? In that case 

 

( ) ( ) 0'0' ,0,0 +−
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dp
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Rp  ,    (3.26) 

P0 

P 

S1 
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       A                          B                           C                          D 

Fig. 9. Intersection points with a cylinder. P0 and P are the begin- and ends of the 

path. In case A the intersection point is S1 (at =m<M), B: S1 (at =m<M), C: S2 

(at =M ; m<0), D: no intersection (m<0 and M>1). 

(1) 
(2) 

(3) 

(4) Xrel 

Yrel 

Zrel 

d 

2R 

Fig. 10.  An array of cylinders parallel to the X-axis. The dots • indicate intersection points. 

With the subscript “rel” we denote relative coordinates with respect to the generating cylinder 

of the set. R = radius; d = repetition distance. For paths (1)…(4): see text. 
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and the path will cross one of the planes zrel =  R, like path (1) or (2) in Fig. 8. If not, no intersection 

will take place (e.g. path (3) or (4) in Fig. 8). 

• If eq. (3.26) holds, does the path start inside the volume with boundaries zrel =  R, or:    

 

Rp z ,0 ' ?          (3.27) 

 

• If eq. (3.27) holds, does the path start inside one of the tubes? If so, following expression must hold: 

 

Rdtn − relyp ˆ'0       with   







=

d

p
roundt

y

n

,0 '
 .   (3.28) 

 

The operator “round” takes that integer value which is nearest to the argument between the brackets. 

Now we can solve the analogous eq. (3.24) for cylinders parallel to the X-axis:  

 

      22

,0
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,0,0,0

222 )"()"(."."2)()( Rppzpypzy zyzy =+++++  ,  (3.29) 

with p0” = p0’ – tn d relŷ . 

 

• In case eq. (3.28) does not hold, then the path starts outside all tubes. In that case we solve eq.(3.29) 

while taking for tn the value  





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


=

d

p
trunct

y

n

,0 '
,         (3.30) 

where the operator “trunc” removes the fraction from its argument. However, since according to eq. 

(3.27) the starting point is inside the volume where zrel <R, the only tubes that can be intersected 

are those with tube numbers tn and tn+1, we have to solve eq.(3.29) for those two tubes only. 

• However, in case eq.(3.27) does not hold, the path will start outside the volume where zrel <R. 

Then first the intersection point with the nearest of the two planes zrel =R is calculated, and from 

there the procedure is followed as in the case of a valid eq.(3.27). 

• Finally, the intersection point is corrected for the coordinate shifts due to the tube number being  

0 and the relative position of the generating tube (at tube number tn = 0). 

 

(e). Cylinders parallel to the Z-axis. 

 

In the case of cylinders parallel to the Z-axis, the program offers the opportunity to insert two-

dimensional arrays of cylinders, with equal repetition distance for the X- and Y-pitch. In addition, the 

cylinders do not have infinite length, as was the case for cylinders parallel to the surface, but will have 

a coverlid and a bottom lid. This will enlarge the intersection possibilities to be considered. See Fig. 11. 
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Now we have to define two tube numbers, one for X-tubes and one for Y-tubes: tnx and tny. In this case, 

the reasoning is as follows: 

• Is the start position of the path in between the planes of the top and bottom lids of the tubes? If not, 

the nearest intersection, if any, will occur at the top or bottom lid of one of the tubes. See below. 

• Is the start position of the path inside one of the tubes? This is equivalent with:  

 

Rdtny − relyp ˆ'0
      with   








=

d

p
roundt

y

ny

,0 '
 ,   (3.31) 

 

and simultaneously a similar question for the X-coordinate.  

• If so, we can calculate the intersection points with the curved wall and with the two lids of that tube, 

and take that intersection point (if any) that is reached first. For the curved wall we use a similar 

expression as eq.(3.29): 

 

      22

,0

2

,0,0,0

222 )"()"(."."2)()( Rppypxpyx yxyx =+++++  , (3.32a) 

p0” = p0’ – tnx d relx̂ - tny d relŷ .       (3.32b) 

 

In case an intersection with the curved wall exists, we check whether an intersection with one of the 

lids will occur earlier in the path. For the lids we first calculate the intersection points of the (relative) 

photon vector with the planes z = ztop and z = zbottom, given by 

 

)".(";)".(" ,0,0,0,0 ztopySztopxS pz
z

y
pypz

z

x
px −




+=−




+= ,  (3.33) 

 

(and similarly for the bottom lid) and check whether these points will lye on the lid of one of the 

tubes, i.e.  have a distance to the axis of the nearest tube that is smaller than R. This procedure is 

also followed when a photon is approaching a layer with Z-tubes from another layer.  

• If eq.(3.31) is not valid for one of the X or Y coordinates, the photon starts outside any tube. Now 

the firstly encountered tube, with axis within 2R distance from the propagation vector of the photon, 

has to be determined.  The tube number of the nearest tube will depend on the sign of sx = x / |x| 

and sy = y / |y|, as is the number sequence of tubes to investigate for the existence of intersection 

points (going to higher or lower numbers). Following the photon path p the subsequent tubes most 

adjacent to the path are interrogated about intersection points by solving a similar equation as 

eq.(3.32), until that equation has an acceptable solution (between 0 and 1) or the path has been 

completed (i.e. no intersection found).  This procedure is illustrated in Fig. 12. 

Fig. 11.  Cylinders parallel to the Z-axis. a) Several possibilities for intersections. b) Two-

dimensional array of cylinders; the dots indicate the symmetry axes, pointing into the plane of 

drawing. The photon will intersect with the nearest cylinder that is positioned within 2R 

distance of the photon propagation vector. 
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(f). Spheres and droplets. 

 

As with tubes parallel to the Z-axis, one might define sets of identical spheres  arranged in a plane 

perpendicular to the Z-axis, with equidistant spacing. For those spheres, a similar procedure as for Z-

tubes can be followed. Eq. (3.32) is replaced by (see Fig.13) 

 ( ) ( ) 2222
2 R=−+−•−+− mpppmppp 0000     (3.34) 
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Fig. 12. The procedure for intersection points with Z-tubes.  O is the origin of the layer 

system. G is the generating tube (position pgen). A0  is the starting point (at p0r) of the actual 

photon path p. Subsequently the existence of intersections is investigated with adjacent tubes. 

This is done by shifting point A0  to A-1, A1, …A3…respectively, and solving a similar equation 

as eq. (3.32) for both adjacent tubes along the Y-axis. In this case points A1 and A2 will not 

lead to intersection points, and A-1 and A3 would have led to intersection points, but outside 

vector p (<0 and >1 respectively). In case the starting point lies within a distance R from 

the axis (point B0), that point is not shifted to B-1 (analogous to A-1 ). 

O 
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m 
p0 
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p 

Fig. 13. Determination of the intersection point S with a sphere.  p0 , p and p are the 

photon vectors, m is the centre point vector and s points at the (first encountered) 

intersection point. 
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which can be written as: 
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  (3.35) 

 

with p0”  defined as above (see eq.(3.32)). With these equations the intersection point S can be calculated 

(if present). For calculating refraction and reflection, one needs the normal vector nS and the angle of 

incidence i of p with nS at the sphere surface: 

 

 msn
nΔp

nΔp
−

•

•
= //;cos S

S

S
i .      (3.36) 

 

The direction of the normal vector depends on the way the surface is crossed, with the photon arriving 

from the inside or outside. The other axes (lS and mS)  of the coordinate system at point S can be found 

using  

 

SSS lmnmpn == SS ; ,      (3.37) 

 

with mS perpendicular to the plane of reflection or refraction and lS lying in that plane, along the sphere 

surface. 

 

In the program we have options for: 

- A single sphere at a fixed position, 

- That sphere, but repeated in a horizontal (XY-) plane, 

- Randomly distributed spheres in a cylindrical volume 

- One droplet sphere, temporarily generated in front of the photon. 

In the program an option is included for distribution of the radii around an average value, with standard 

deviation. 

 

Droplet spheres. 

 

The above text can be used for spheres with fixed positions. However, in practice that may cost a lot of 

calculation time, since after each photon transport event one has to investigate whether the photon in the 

next transport step will hit one (or more) of all of those spheres.  

Therefore, we included an option for a temporary sphere, that can be positioned in front of the photon. 

Using the pathlength of the photon in the surrounding medium, and the distance of the sphere from the 

actual position of the photon (at the latest transport event) we calculate the probability the photon will  

“hit” that sphere. If so, the same scattering/reflection/refraction procedure as for a fixed sphere (see 

above) is used. 

 

To calculate the position of the “temporary“ droplet sphere, we use the mean free path of the droplets in 

their medium, mfpd, given by 

  

 mfpd = cd.σd ,          (3.37a) 

 

with cd  is the concentration of droplets [1/mm3] and σd is the geometrical cross section ( = π r2 : r = 

radius). The distance of the actual photon position to the droplet (the “virtual”sphere) is then given by 

 

𝜏𝑑 =  −𝑚𝑓𝑝𝑑 . ln (1-R)         (3.37b) 
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with R a random number ( 0 <= R < 1). The photon will reach the droplet if its path length, given in eq. 

(3.10) using μm (the attenuation coefficient of the surrounding medium), is larger than τd , provided no  

hits with other objects will occur before reaching the droplet. 

 

However, there is a catch. The photon will hit the sphere somewhere at its surface, not necessarily at a 

spot on the line between the original photon position and the center point of the sphere. The probability 

to find the “hit”spot under a certain azimuthal angle of the sphere, as seen from its center point, will be  

1/(2π), and the polar angle will be given by a probability proportional to a, where a is the radius of the 

projection of the “polar” circle around the center axis. See Fig. 13a. 

 

 

 

Fig. 13a. The photon will hit plane A (perpendicular to the photon direction vector) in point P, 

given by radius a (a<=r, the sphere radius)). The center point of the sphere M can be found 

from P. 

 

Center point M must be positioned somehere on a circle around P. Thus M can be found from P using a 

random number R * 2.π ,( 0<=R<1)  for the azimuthal angle, and another random number R  for a =√R.r. 

The square root is necessary to account for the circumference of the circle (the probalility  of a “hit” at 

radius a (0 < a <= r) will be proportional to the circumference 2πa). 

We construct two vectors q1 and q2  in plane A, perpendicular to each other and to the photon direction 

Δp , using the scalar and vector products for these three vectors, and normalize the length of  q1 and q2  

to unity. Then M is found using 

 

 M = P + a.cos(β). q1 + a.sin(β). q2        (3.37c) 

    

with  β is the angle between vector MP  and one of  q1 and q2 . We thus changed the positioning of P 

with respect to M, into M with respect to P. And now we may proceed as with a “normal” (i.e. fixed 

sphere; see above).  

 

 

(g). Rectangular blocks. 

 

Rectangular blocks, as used in the program, always have their side planes parallel to the laboratory 

coordinate axes. The position and dimensions are defined using maximum and minimum values for the 

coordinates of the side planes, e.g. xmax and xmin, and similarly for y and z. All six sides have to be 

interrogated for the presence of intersection points. For instance, for the block side at z = zmax , we 

calculate a ratio fz,max as 
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and similarly for all other sides. The smallest value of those six f-values, provided between 0 and 1, will 

determine the side where the first intersection will take place. If no such f-value can be found, no 

intersection point is present.  

 

(h). Cones. 

 

The equation for cones is: 

 

( ) ( ) ( ) ( )2222
/;0 hRzzyyxx OOO ==−−−+−  ,   (3.38) 

 

for a cone directed along the Z-axis, as shown in Fig.14. The relevant intersection points are given by 

 

 ( ) ( ) ( ) 0.'.'.'
2

,0

2

,0

2

,0 =+−+++ zpypxp zyx  .    (3.39) 

 

The smallest value of , if between 0 and 1, determines the valid intersection point S, provided the z-

component of S is smaller than h. However, eq.(3.38) also describes the other half of the cone, and 

therefore, for the intersection point to be accepted, this point should lie between top and bottom of the 

cone, which defines an additional condition for point S to exist.  

For reflection and refraction, we have to construct the normal vector n on the surface in point S: 

 

 vv/nsstvtps ==−= ;)(;  ,    (3.40) 

 

with t and t as the position and direction vectors of the cone, and v as a vector in S parallel to the cone 

surface and perpendicular to the plane spanned by t and s. The direction of n depends on the way the 

surface is crossed: arriving from the inside or outside. The determination of the angle of incidence is 

similar to the case of tubes and spheres. 

 

With cones, also an intersection with the bottom is possible. In the coordinate frame of Fig. 12, we have 

two conditions to be fulfilled: 
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Fig. 14. Intersection with a cone (example: directed along the +Z-axis). The cone is 

characterized by its direction vector (along the axis) and its opening angle, or its radius 

R at height h. Right: construction of the normal vector. 
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In all cases the smallest of the -values of all possible intersections, if between 0 and 1, should be taken 

for the intersection point. 

In the program the available cones are those with the axis parallel to the X, Y or Z-axis. 

 

 

(i). Mirrors. 

 

The normal equation of a mirror plane is given, using the normal vector a = (a1,a2,a3), by 

 

 0... 321 =+++ dzayaxa ,       (3.42) 

 

where d is a constant. Vector a should point to the half plane where the starting point of the photon path 

is situated.  

We can calculate the vector pS  to the intersection point S by insertion of the photon path (pS = p0 + .p) 

into eq.(3.42), which will render the -value corresponding to S. The direction vector l after reflection 

is given by 

 

 plaappl  ).1(;).(2// −=•− .     (3.43) 

 

 

(j). Torusses 

 

We describe a HALF-TORUS. This makes it feasible to combine torusses to a chain, apart from using 

two half-torusses to produce a closed full-circle torus. 

In fig.14a. the situation is depicted. 

 

Fig. 14a. A half-torus, symmetry-axis is Z-axis (perpendicular to surface of layer system). Inner and 

outer radius: r and R respectively. 

 

The general equation of a torus with symmetry-axis parallel to the Z-as, is (apart from the limitation 

to a half-torus, at pos. Y-values):  
 

𝐹  ≡ (√𝑥2 + 𝑦2 − 𝑅2)2 + 𝑧2 − 𝑟2      (3.44a) 
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where R and r are the outer and inner radius respectively, and with F > 0, = 0, < 0 for points outside, on 

the wall or inside the torus respectively. 

This  leads to a  4th-degree equation: 

 

 (𝑥2 + 𝑦2 + 𝑧2 + 𝑅2 − 𝑟2)2 = (2𝑅)2(𝑥2 + 𝑦2) .   (3.44b) 

 

In principle there are 0, 2 or 4 intersections with the photon path, given by 

 

 𝒑 = 𝒑𝟎 + 𝝀. ∆𝒑         (3.44c) 

 

with 0 < λ < 1, provided |𝛥𝐩| is large enough. Intersections are found by inserting (3.A3) into (3.A2), 

e.g. px = p0x + λ.Δpx for x, etc. This produces a 4th degree equation in λ. We need the solution (if present) 

with the smallest value for λ, provided 0 < λ ≤ 1. 

Literature provides general solution methods for 4th degree equations. However, we took another 

approach, using iterations to reach the nearest intersection point, if present. The steps are: 

1. Set 𝜆0 = 0 and calculate F0. 

2. Define  dλ = 1/N , with N = large enough to make the corresponding |Δp| much smaller than the 

smallest dimension of the torus (normally the inner radius 𝑟). 

3. Calculate Fi at λi = λ0 + i.dλ, with i = 1..N. 

4. If  Fi * Fi-1 < 0,  an intersection point is crossed between λi-1 and  λi. In that case: 

a. Set 𝜆0 = λi-1  and reduce dλ systematically:  dλnew = dλold /2. 

b. Set N = 2. 

c. go repeatedly to step 3 and repeat this procedure until dλ  becomes small enough (e.g. 

< 1 µm). 

5. If  Fi * Fi-1 < 0 is not met for any i = 1..N, then there will be no intersection point. 

In case the initial dλ is not small enough, there will be a chance that two closeby intersection points will 

be missed.  

The initial process in step 1 can be accelerated by precalculating the approximate entrance point of the 

photon path into the torus. 

 

 

(k) Lenses 

 

Lenses can be thought of as consisting of two partial surfaces of two spheres. We consider lenses with 

symmetry axis parallel to the Z-axis, pointing inward into the layer system. There are 4 possible 

situations (see Fig. 14b): 

We use the convention of positive and negative radii when the centre point of the curvature lays behind 

and in front of the lens respectively. 

The radius rS and the Z-coordinate zS of the circles of the points of intersection (xS, yS, zS) (if present) of 

the two surfaces can be found from:  

 

 rS
2 = R1

2 – (zs - Z1)2 = R2
2 – (zs - Z2)2  ;  rS

2 = xS
2 + yS

2    (3.44d) 

 

The Z-coordinates zd1 and zd2 at diameter d are given by: 

 

 (d/2)2 = R1
2 - (zd1 - Z1)2   and   (d/2)2 = R2

2 - (zd2 - Z2)2      (344e) 

 

We will limit the physical diameter of each lens surface to the value of its spherical diameter. 

In situation D the physical diameter of the lens will determine d of the lens as a whole. In situations A, 

B, and C the diameter has a physical maximum  at the intersection points of the two lens parts. Then zd1 

= zd2 . 

Intersections of the photon vector (see (3.44c)) with the front and backside are similar to those with a 

sphere surface. See subsection (f).  
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Fig.14b. Lenses: four possible situations. Also indicated: normal vector at the surface; always pointing 

outward for incoming photons  (inward for uitgoing photons). 

 
Intersections with the side wall of the lens (in situation D, and in A, B, and C when the diameter is 

smaller than the maximum diameter) are given by eqns. (3.22a) and (3.32a). Solving (3.32a) will 

produce zero or two intersection points (separate or coinciding), given by λ1 and  λ2. We need the solution 

with the smallest value of λ, which will bring an intersection if 

 

(0 < λ ≤ 1) ˄  (zs ≥ zd1)  ˄ (zs ≤ zd2).       (3.44f) 

 

However, since generally lens walls are not used for photon transport, it is advisable to discard these 

photon paths during the simulation. 

 

In Fig. 14b. also the normal vectors to the lens surfaces are indicated, for photons incident from outside 

the lens. The vector coordinates are given by the normalized vector difference of the position of the 

actual point of entrance into the lens and that of the centre of the curvature (M1 and M2 respectively).  It 

should be noted that for photons travelling inside the lens object, the direction of these normal vectors 

has to be inverted.  

 

The effective focal length f  of the lens is calculated using the “Lens Makers Formula”: 

 
1

𝑓
= (𝑛 − 1) [

1

𝑅1
−

1

𝑅2
+

(𝑛−1).𝑑

𝑛𝑅1𝑅2
].      (3.44g)  

 

where n is the refractive index with respect to the surrounding medium, and d is the lens thickness at the 

symmetry axis point:   d = Z2 – Z1 . 
 

 

(l).   Pupils (Diaphragms) 
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Pupils are defined as circular openings in a absorbing screen, with the symmetry axis parallel to the Z-

axis, thus perpendicular to the surface of the layer system. 

Photons will pass provided their Z-position when passing the opening isd smaller than the radius or the 

opening. 

 

 

(m). Entrance in an object. 

 

When a photon enters a new layer, it is possible that it immediately will enter a “object” in that layer 

rather than first the material of the layer itself. An example is the entrance in a layer where a single Z-

tube or a set of those tubes is present. This has to be checked separately. Therefore, the photon, after 

reaching that interface, is temporarily propagated further along its path over a very small distance, to 

ensure that it is placed inside. The next step is to check whether the following condition C is true (with 

pc as the temporary position vector, pc’ as that vector relative to the object or to the generating object in 

case of an array, and d as the repetition distance (if present)) : 

• Rectangular block:  

( ) ( ) ( ) ( ) ( ) ( )maxminmaxminmaxmin zpzpypypxpxpC czczcycycxcx = , 

• Cylindrical tube(s) parallel to the X-axis :      (3.44h) 
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• Cylindrical tube(s) parallel to the Y-axis : 
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• Cylindrical tube(s) parallel to the Z-axis : 

     bottomzctopzcyycxxc zpzpRqpqpC −+−= ,,

22
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2

, )'()'( ,  (3.44k) 

with ztop and zbottom as the z-coordinates of the top and bottom lids of the tube(s), 

• Spheres : 

 22

,

2

,

2

, )'()'()'( RpqpqpC zcyycxxc +−+−= ,     (3.44l) 

• Cones (e.g. with symmetry axis (bottom → top) pointing to +Z-axis) : 

( ) ( )  2

,

2

,

2

,,, )/.'()'()'()1/'0(00' hRppphphpC zcycxczczc += , 

and analogously for the five other directions,      (3.44m) 

• Oblique cylinders (using b as the directional unit vector along the symmetry axis): 

     bottomzctopzczcycxc zpzpRpppC •−++= ,,

222

,

2

,

2

, )()'()'()'( b'pc .(3.44n) 

• Mirrors (with b as the normal vector on the mirror surface) :  

)0'( =•= bpC          (3.44o) 

• (Half-) Torus, with R and r being the outer and inner radii, and with its plane perpendicular to the 

Y-axis:  

𝐶 = [√(𝑝𝑐′,𝑥)2 + (𝑝𝑐′,𝑧)2 − 𝑅 ]
2

+ (𝑝𝑐′,𝑦)2 − 𝑟2 < 0    (3.44p) 

• Lenses with symmetry axis parallel to the Z-axis (see subsection (l)): with 

r2=(𝑝𝑐′,𝑥)2+(𝑝𝑐′,𝑦)2:         

𝐶= [r < d/2] ˄          (3.44q) 

    [{(R1 > 0) ˄ (R2 < 0) ˄ (pc’,z ≥ Z1+|R1|-√(R1 
2- r2)) ˄ (pc’,z ≥ Z2-|R2|+√(R2

2
 - r

2))} ˅ 

        {(R1 > 0) ˄ (R2 > 0) ˄ (pc’,z ≥ Z1+|R1|-√(R1 
2- r2)) ˄ (pc’,z ≥ Z2+|R2|-√(R2

2
 - r

2))} ˅ 

        {(R1 < 0) ˄ (R2 < 0) ˄ (pc’,z ≥ Z1-|R1|+√(R1 
2- r2)) ˄ (pc’,z ≥ Z2-|R2|+√(R2

2
 - r

2))} ˅ 

         {(R1 < 0) ˄ (R2 > 0) ˄ (pc’,z ≥ Z1-|R1|+√(R1 
2- r2)) ˄ (pc’,z ≥ Z2+|R2|-√(R2

2
 - r

2))} ] 
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3.4. Absorption. 

 
Normally the position of the photon, together with its directional angles, is stored upon reflection or 

transmission. However, when in absorption mode, the position of absorption will be stored, together 

with the directional angles of the previous (last) photon path. These angles are stored using the normal 

convention for the polar angle  and azimuthal angle  : 

 p = |p| . (sin . cos , sin .sin , cos  ),     (3.45) 

with   = 0, if the direction is pointing along the +Z-axis, inside the sample, and  in the XY-plane, as 

the angle with the X-axis. 

 

 

3.5. Polarisation. 
 

(1). Polarisation in scattering events. 

 

To handle polarisation effects in scattering events we use Van de Hulst ‘s scattering matrix 15, with E0 

and E as the incoming and scattered electric field vectors: 
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     (3.46) 

 

where the subscript l and r denote parallel and perpendicular polarisation respectively. In the following 

we will limit ourselves to spherical particles, where S3 and S4 are = 0. The other parameters S1 and S2 

are functions of the polar scattering angle . The factor (4m) can be inserted in the S-functions as well. 

Note that Van de Hulst uses Gaussian units instead of SI-units, which means that he does not take the 

factor (4m) into account. 

The Stokes vector ST = (I,Q,U,V) can be constructed from this matrix: 

 

 I = ElEl*+ErEr* 

Q = ElEl*-ErEr* 

U = ElEr*+ErEl*        (3.47) 

V =   i(ElEr*-ErEl*). 

 

With  

 
)exp(

)exp(

rzrr

lzll

itiikaE

itiikaE





−−−=

−−−=
 ,      (3.48) 

 

it follows:  

 

 I = al
2 + ar

2  U = 2alar.cos    = l - r   (3.49) 

 Q = al
2  - ar

2
  V = 2alar.sin   

 

For normal (non-birefringent) materials l = r . The degree of polarisation is defined as 

 

2221
VUQ

I
P ++=        (3.50) 

Transformation of the Stokes vector upon scattering (for spherical particles) is given by 
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 ST
n = F . ST         (3.51) 

 

with  
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and 
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and so we arrive at the Mueller matrix M replacing F : 
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where the parameters m11 … m44 depend on the particular scattering function and the scattering angles 

 and . We will deal with those parameters in the next section. 

 

Transformation of the Stokes vector upon scattering has to be preceded by a rotation from the actual 

coordinate system (given by the unit vectors el , er , ep , with directions parallel and perpendicular to the 

actual polarisation direction, and parallel to the direction of propagation respectively) to that in the 

scattering plane (el’ , er’ , ep’ , with ep’= ep ). This rotation is determined by the rotation matrix R : 

  

 





















−
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02cos2sin0

02sin2cos0

0001
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
R ,      (3.55) 

 

with  as the azimuthal scattering angle (see Fig.15).  
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Subsequent multiplication with the Mueller matrix produces the new Stokes vector in the coordinate 

frame (el“, er” , ep”) connected to the new propagation direction ep” (with ep”• ep’ = cos  ): 
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plr eee .  (3.60) 

 

Subsequent scattering events (i,i, with i=1...n) will result in  
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 ,      (3.61) 

 

and this determines the polarisation state of the emerging photon. Here the vector ST
0  is the Stokes 

vector of the incoming photon, given by eq.(3.47) after determination of the parallel and perpendicular 

directions corresponding to E// and E⊥ . 

 

In the non-polarised case (natural light), the scattering angles can be determined using two subsequent 

random numbers. In the polarised state that is not the case any more. When determining an angle  using 

a random number, the angle  is determined by the joint probability: 

 

   p(,) = m11() + m12(). (Q.cos 2 + U.sin 2 ) / I .    (3.62) 

 

Yao and Wang‘s approach 16 calculates  with m11 (as in fact is done with natural light) and subsequently 

 with eq.(3.62). 

Several authors have dealt with polarization of light in turbid media.16-21. 

 

(2). Polarisation at interfaces. 

 

Changing of polarisation direction may also occur at interfaces, where reflection or refraction takes 

place. With 1, 2 and 3 as the angles of the electric vector E with the plane of incidence (formed by 

the incident propagation direction and the normal on the surface at the point of intersection) for the 

 ep” 

 ep’  

 ep  

  el  
 er  

  el’  

 er’  
 

 

Fig. 15.. Coordinate frames of subsequent scattering events. The propagation vector ep 

is first transformed into ep’ (by rotation over ) and then to ep” (by rotation over ). The 

vectors el , er and el’ , er’ are frame vectors parallel and perpendicular to the scattering 

planes. 
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incident (1), refracted (2) and reflected (3) vector respectively (see Fig.4), and A as the field amplitude 

it can be shown (see e.g. Born and Wolf 22) that  

 

 11,111,1 sin.;cos.  AAAA rl ==       (3.63) 

where 1 can be derived from the components of the incident Stokes vector using 
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Now we calculate the amplitudes of the reflected and transmitted (refracted) wave 
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From these we can derive the corresponding Stokes vector coefficients and Mueller matrices 

TR MM  and , where the subscripts R and T stand for reflection and transmission (refraction).  

However, to construct the new Stokes vector it is easier by using the amplitudes directly.   

 

To find out whether reflection or refraction  (transmission) will take place, we have to look at the 

reflectivity R and transmittivity T of the energy instead of those of the amplitude: 
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where we can verify that  

 

R + T = 1         (3.67) 

 

The procedure for handling reflection and refraction at interfaces is as follows: 

• Rotate the coordinate frame of the incoming photon to the coordinates of the plane of reflection, 

using a rotation matrix as in eq. (3.55); 

• Determine whether reflection or refraction will take place, using eq.(3.67) and a fresh random 

number RN. Reflection will take place if RN  R, and refraction otherwise. 

• Construct the new coordinate frame for the photon and the new Stokes vector, using eq.(3.65). 
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4.    Scattering Functions. 
 
Now we introduce various scattering functions that are frequently used in light scattering simulations. 

In most cases, we will follow the treatment of Van de Hulst15 and of Ishimaru2,3. Further references can 

be found there. 

 

Various scattering functions are available, depending upon the size of the scattering particles. A rough 

description is given in the table, in which the approximate region of applicability is presented as a 

function of the size of the scattering particles, measured in terms of the wavelength λ.  

 

 0.01 λ 0.1 λ λ 10 λ 100 λ 1000 λ  

Isotropic   

 Dipolar Rayleigh   

 Rayleigh-Gans   

 Mie  

 Henyey-Greenstein 

 Fournier-Forand 

 Peaked forward 
 

Of these, “Henyey-Greenstein” (sec.4.5), “Gegenbauer” (sec.4.6), “Peaked forward” (4.7) and 

“Fournier-Forand” (sec. 4.8)  only give angular dependent functions, while the other four (sec.4.1-4.4) 

describe absolute scattering cross sections with angular dependences. 

 

In matters of light scattering by particles two parameters are important: the aspect ratio x and the relative 

refractive index nrel. The aspect ratio is given by 

 

 

med

vac
med

med n
ka

a
x







=== ;

2
,      (4.1) 

where a denotes the radius of the particle,  the wavelength of the light and k the modulus of the 

wavevector. The subscripts med and vac denote “medium” and “vacuum” respectively. The relative 

index nrel is the index of the particles with respect to the surrounding medium. 

 

We start with very small particles (small compared to the wavelength: x<<1), giving rise to “dipolar” 

or “Rayleigh” scattering. When gradually increasing the radius we encounter “Rayleigh-Gans” or 

“Debije”-scattering and finally scattering by large particles (x>>1). Generally valid expressions were 

developed by Mie (“Mie”-scattering). Finally we have expressions of a more phenomenological nature, 

like “Henyey-Greenstein”-scattering or “peaked-forward”-scattering.   

 

We will use the geometrical and scattering cross sections g and s [m2], being the real and the apparent 

shadow of the particle, and the efficiency factor Qsca = s / g , with g = a2. 

 

The ultimate way of treating scattering in numerical simulation is to use the scattering coefficient s (in 

m-1), defined as 

 

sss n  = ,          (4.2) 

 

with ns as the particle concentration (in m-3). The scattering coefficient is a measure for the average 

number of scattering events per unit of length. Normally in tissue the scattering is predominantly in 

forward direction, which means that randomisation of the photon direction only will occur after a  
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Fig. 16. The meaning of the double vectorial product in determining the direction of scattering 

and polarization, for two cases: polarisation perpendicular to the XY-plane (left) and parallel 

to that plane (right). Here  is taken as a scalar.  

 
relatively large number of scattering events. Therefore, in those cases it is worth while to use the reduced 

scattering coefficient s’, defined as 

 

 )1(' gss −=   ,        (4.3) 

 

where g stands for the averaged cosine of the polar scattering angles during those events. This value will 

be 1 for perfectly forward scattering and 0 for isotropic scattering. For tissue g   0.8-0.9 and for blood 

g  0.95-0.99. 

 

 

Standard electromagnetic theory for light scattered by dipoles leads to the expression: 
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   (4.4) 

with Es and E0  as the scattered and the incoming electric field respectively; R is the vector from the 

scatttering volume V to the point of detection, ks is the scattered wave vector in that direction, and ε  is 

the dielectric tensor (which frequently reduces to a scalar).  The time t’ is the reduced time, given by 

 

 
c

tt
rR −

−='          (4.5)  

 

with c as the light velocity in the media. In eq. (4.4) the dimensions of the scattering volume V are 

assumed to be small compared to R. The significance of the double vector product is illustrated in Fig. 

16. For a derivation: see www.demul.net/frits, scroll to “Montcarl” and see the youtube-movies . 

The Fournier-Forand scattering function was derived for use with (ocean) water including particles. 

 

4.1. Dipolar (Rayleigh). 
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With dipolar scattering, the particles are assumed to be so small that light scattered from different 

oscillating electrical dipoles in the particles will not lead to phase differences upon arrival at the point 

of detection. Using standard electromagnetic dipole radiation theory, or a standard Green’s functions 

approach, we may derive for the radiative term Erad of the scattered electric field strength (Fig. 17): 

 

 ( )
c

r
ttti

r

kpm −=−= ';.'exp.sin
4

2


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eErad ,    (4.6) 

 

where pm  is the amplitude of the oscillating dipole p(t) = pm exp (it), with   as the frequency ( = c 

/ k, with c the local light velocity). The parameter t’ accounts for the time retardation upon arrival at 

detection, which generally could be the origin of phase differences. For clarity: Van de Hulst uses 

Gaussian rather than S.I.-units, which means that the factor (4m) is set to unity. 

  

Frequently pm can be considered as being related to the incoming electric field E0, through the 

polarisability tensor  of the particle. In a number of cases this tensor reduces to a mere constant , 

with 
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where p and m are the dielectric constants of the particle and the medium, H is the polarisability as 

used by Van de Hulst (assuming 4m = unity) and fp denotes the correction for the internal enhancement 

of the incoming field (see standard EM text books). Note the dependence on the particle volume, through 

a3. 
We find for the two electric field components: 
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The intensities I// and I⊥ are proportional to the squares of the field strengths (I = ½cmE2), thus 

k 

r  

 p(t) 
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P 
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x y 

k0 

p,E0 

E// 

E⊥ 

 

 

Fig. 17. a) Electric dipole, radiating towards detection point P at distance r and with 

polar scattering angle .  The vectors er and e are unit vectors. Due to symmetry, the 

azimuthal angle does not play a role.  

b) The scattering event, with conventional polar and azimuthal angles and . The 

incoming light propagates along the Z-axis. E// and E⊥ are the field components 

parallel and perpendicular to the scattering plane, formed by k0 and k . 
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Due to the dependence on 2 and k4, the intensities are proportional to a6 and 1/4. 

The components of Van de Hulst’s scattering matrix, eq. (3.46), will read  
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This means that the component perpendicular to the scattering plane shows uniform scattering, but the 

parallel component has a cosine behaviour: when viewing the scattering particle along a direction 

parallel to the polarisation, no scattering will be observed. 

For natural light the total intensity will be proportional to ½(S1
2+S2

2), and thus 
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Spatial integration of eq.(4.7) over  and  leads to the total scattered intensity Itot (now expressed in 

W/sr instead of W/m2): 
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The scattering cross section s is defined with (using  as the scattering solid angle and F() as the 

angle-dependent scattering function, but normalised to unity upon -integration over 4): 

 

 0).(.)( IFI s =  ,        (4.13) 

 

with I() expressed in W/sr and I0 in W/m2 . This leads to  
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The ratio Qsca is given by 

 

2

2

2
44

2

24

2

1

3

8

2

3
)(

3

8









+

−
















+
−==

m

m
xkaQ

mp

m
mp

g

s
sca









  (4.15) 

 

where m2 is the relative refractive index of the particles in the surrounding medium: m2=p /m. 

 

 

4.2. Rayleigh-Gans 

 

When particles grow larger, the phase differences of scattered waves arriving at the detection point from 

different source points in the scattering medium, cannot be neglected any more.  

Here we will follow Van de Hulst, using the approximation |p-m|<<m. Also the value of 

 x|p-m|/m should be << 1.  With these assumptions we may write for a volume element dV: 
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with m is the relative refractive index of the particles in the medium: m2 = p / m. The non-zero 

components of the scattering matrix will read: 
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with R(.) obtained by integration over the volume V using a phase-dependent factor  i: 
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The phase-difference   is given by k• (r-rO), where r and rO are the position vectors from the scattering 

volume element under consideration and the origin in the sample.  The scattering cross section will be 

(for natural incoming light): 
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For special particles the function R(,) can be expressed analytically: 
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The factor Qsca for spherical particles is given by: 
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For other shapes, see Van de Hulst. 

 

 

4.3. Mie. 
 
In principle, the rigorous scattering theory, as developed by Mie (see ref. in 15), presents analytical 

expressions for all kind of particles. It departs from the Maxwell equations and solves the scalar part of 

the wave equation, taking boundary conditions into account. This leads to complicated expressions for 

the components of Van de Hulst’s scattering matrix, which are only tractable when treated numerically.  

In the Montcarl-program we use a procedure developed by Zijp and Ten Bosch23, which renders S2 and 

S1. Again, for natural light the total intensity will be proportional to ½(S1
2+S2

2). See Fig. 18 for an 

example. 
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Fig. 18. Example of a MIE-file. Scattering function according to the  Mie-formalism. 

 

 

4.4. Henyey-Greenstein. 

 
The Henyey-Greenstein scattering function24  pHG originates from the astronomical field, to calculate 

the scattering by cosmic particle clouds. Since it can be written in a closed analytical form, it can be 

used as a fast replacement for the Mie-functions. The function reads: 
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−
= ,     (4.22) 

 

where g is the averaged cosine of the polar angle  of the scattering events  This function is normalised 

to unity upon integration over 4 solid angle. See Fig 18a. for a (linear) plot of the function p as a 

function of the polar angle θ, with g as the parameter.  For isotropic scattering g = 0 and for extreme 

forward scattering g approaches unity. Therefore g is called the anisotropy factor. 

 

A drawback of this expression is that the function only describes the angle-dependent behaviour of the 

scattering. The calculation of the scattering cross section has to be done by other means. One option is 

to insert the total scattering cross section as obtained by Mie-scattering (or another approach, if 

applicable) as a separate factor in the Henyey-Greenstein expression. 

 

 

4.5. Gegenbauer. 
 

The Gegenbauer scattering function (“Gegenbauer kernel”) uses two parameters: α, called the shape 

factor, and g, the  anisotropy factor. The phase function is given by (using μ = cos θ ; the polar scattering 

angle) : 
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𝑝𝐺𝐾(𝜇) =
𝛼.𝑔

𝜋

(1−𝑔2)2𝛼

[(1+𝑔)2𝛼−(1−𝑔)2𝛼][1+𝑔2−2𝑔.𝜇]1+𝛼]
    (4.22a) 

 

The factor α should be chosen as α > -1/2.  If α = 0 , pGK →∞. If α = ½ , pGK = pHG.  In Fig .18a the HG- 

and GK-functions are plotted for varying values of the parameters.  

 

  

Fig 18a.  Henyey-Greenstein and Gegenbauer phase functions p as a function of the polar angle 

θ, with g as the parameter. Note the logarithmic scales. 
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4.6. Isotropic. 
 

Isotropic scattering can be described using the (normalised) function 

 

 



4

1
),( =isop .        (4.23) 

 

The normalised cumulative function C() will read 

 

 C() = ½ (1 – cos  ).        (4.24) 

 

and thus  can be found from  = arccos (1 - 2RN ), with RN as a fresh random number  (0<RN<1). The 

value of g will be zero. 

 

 

4.7. Peaked forward. 
 

A peaked-forward scattering function is completely artificial. It can be useful for special applications. 

A possible functional form (not normalised) is 

 

 
2

0

2 /exp( −=PFp ).        (4.25) 

 

4.8. Fournier-Forand  
 

Fournier and Forand derived31,32 an approximate form for the phase function of scattering by water with 

particles, e.g. ocean water: 

 

𝑝𝐹𝐹(𝜃) =
1

4𝜋(1−𝛿)2𝛿𝜈 [𝜈(1 − 𝛿) − (1 − 𝛿𝜈) + {𝛿(1 − 𝛿𝜈} − 𝜈(1 − 𝛿)}. sin−2(
𝜃

2
)] +

1−𝛿𝜋
𝜈

16𝜋(𝛿𝜋−1)𝛿𝜋
𝜈 (3cos2𝜃 − 1)  

 

with ν = ½ (3-μ) , 𝛿 = 4 sin2(
𝜃

2
) / [3(n-1)2] and δπ = δ(π) at 𝜃 = 𝜋   (4.26) 

and n is the refractive index of the particles. They derived this expression using an anomalous 

diffraction approximation to Mie-scattering, with the particle density with size greater than r 

proportional to  r-μ. Then -μ is the slope of the log-log-plot of the density versus r. μ must be larger 

than 3. Frequently used values for μ are around μ=4. This means that ν ≈  – ½ . 

 

However, due to the sin2-function in the denominator, for 𝜃 → 0 ∶   𝑝𝐹𝐹 →  ∞, which might hamper 

the calculation of the look-up table (cumulative inverse function). Therefore we adopt the 

approximation: pFF(0) = 10-10
 rad. Its contribution to the look-up table (eq. (3.13)) will be = 0, due to 

the sin(θ) weighting factor.  

 

Therefore, it is advised to calculate the angular distribution with small angular spacings at low angles.  

  



 

 

37 

 

 

5.    Light Sources. 

 

For the injection of photons, one can imagine various mechanisms. Most general is the pencil beam, 

entering from the top. However, other beam profiles can be used as well. Here we offer a broad spectrum 

of those profiles. 

 

 

5.1. Pencil beams. 
 

Pencil beams are the simplest way to inject photons into the sample. The only programmatic requisite 

is to define the point of injection at the sample surface. With those beams, one still has to take care for 

a proper handling of the transport through the upper interface of the sample with the air, to take reflection 

losses into account.  

Pencil beams can be tilted in two directions, which can be described using the tilting polar and azimuthal 

angles  and  . See section 5.2. 

 

 

5.2. Broad beams. 
 

Broad beams come in two forms: divergent beams and parallel beams. For divergent beams we have 

adopted following procedure (see Fig. 19): 

 

We define the divergence angles of the beam projection on the XZ- and YZ-planes respectively, as x 

and y , and the tilting angles of the symmetry axis of the beam with the Z-axis and the X-axis in the 

XY-plane, as   and  respectively. Then we may write (k is the length of k): 

 

kx = k  sin  cos ;    ky = k  sin  sin ;    kz = k  cos    (5.1) 

 

and for the tilting angles: 

 sin.tantan;cos.tantan ====
z

y

y

z

x
x

k

k

k

k
.   (5.2) 

With adaptation for divergence: 

X 

Y 

Z 

k 

 

 

y 

x 

F 

Fig. 19. Entrance of the beam. The surface of the sample is the XY-plane.  F is the focus, 

and   and   are tilting angles of the symmetry axis of the beam. 



 

 

38 

 

x’ = x+x =arctan (tan  . cos ) + x  , 

y’ = y+x =arctan (tan  . sin ) + y ..      (5.3) 

 

The new direction vector k’ will be given by  

 

k’x = tan x’. k’z    ;   k’y = tan y’. k’z    ;  |k’| = k .     (5.4)  

  

This approach offers the opportunity to define divergent beams with different opening angles in X- and 

Y-directions, and with different profiles (Gaussian or uniform). 

For parallel beams an ideal thin positive lens with focal point in F (see Fig. 19) is thought to be positioned 

horizontally on the surface.  

 

 

5.3. Ring-shaped beams. 
 

Here we only apply ring-shaped beams with uniform filling, which means that the light intensity will be 

equal at all point in the ring. Then the amount of photons passing through a ring at distance r from the 

centre and with width dr will be proportional to r.dr. To define the actual distance of the photon we need 

to construct the cumulative function C(r): 

''..)(

1

=
r

R

drrcrC  ,        (5.5) 

where c is a proportionality constant and R1  r  R2 (R1 and R2 being the inner and outer ring radii), and 

normalize C(R2)  to unity. This results in the cumulative function C(r) : 
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−
= .        (5.6)  

 

By equalling this function to a fresh random number between 0 and 1, the value of r is set. Subsequently 

the -value is chosen randomly between 0 and 2.  

 

The ring-shaped beam can be combined with divergence and tilting as mentioned before. 

 

 

5.4. Isotropic injection. 
 

We can adopt several models for isotropic injection. The simplest model is: 

 

 constant;)( == ccI         (5.7) 

 

Then we can construct the normalised cumulative function 
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and by equalling this function to a fresh random number RN , the value of  can be derived, as  = arccos 

(1-2RN) . Again, the value of  is obtained from a random number between 0 and 2. 

 

Another model uses isotropic radiances. See Fig. 20. 
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Using the radiance L(p,r), expressed in W.m-2sr-1, we find for the emitted power contribution and the 

flux vector F : 

 

 
 =

=

dL

ddALdP

).,(.)(

..cos).(

rpprF

rp, 
       (5.9) 

In the case of isotropic radiance, L(p,r) will be a function of r only, and thus 

 

  = dL .).()( prrF ,        (5.10) 

and for the component along the normal vector (Z-component): 

 

  == )(..cos)()( rrr LdLFz        (5.11) 

The other components will render zero, because of a zero result of the -integration of the function sin 

 and cos  over 2. And so, using a constant value L0 for L(r), we find for the normalised cumulative 

function: 

 

 ===









0
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2 ''.sin'.cos.)('withsin
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)( dLC

C

C
C  .  (5.12) 

By equalling a fresh random number (between 0 and 1) to C(), we find the corresponding value for   

(between 0 and ). 

 

 

5.5. Internal point sources. 
 

For internal point sources, we may follow the same lines as with pencil beams or broad, divergent beams, 

if wanted combined with a tilting angle. In this way, we are able to construct a layered sample with 

internal structures like spheres and cylinders, and to direct a beam either from the side or upwards, from 

the backside of the sample. It is also possible to combine this option with the option of internal detection, 

as will be described below. 
 

 

5.6. Distributed sources. 
 

Distributed sources will originate from points in a certain well-defined volume within the sample. These 

points will emit in random directions, and the light will not have a beam-like character. This type of 

photon source will be encountered, for instance when calculating Raman or fluorescence scattering from 

within a scattering and absorbing volume. In those cases the calculations will consist of two steps: 

dA 

d 

O 

r 

n 

p  

Fig. 20. Radiance and power are supposed to be emitted through area dA in direction 

p in solid angle d. 
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• Absorption of light with wavelength 1 at relevant positions inside the medium, 

• Scattering to the surface of the sample, using photons originating from the absorption positions of 

the previous step, but now with wavelength 2 .  

For fluorescence and Raman-Stokes emission 1 should be smaller than 2 . This means that in general 

the optical characteristics of the sample and its internal structure will be different in the two steps. 

 

Due to the absorption step that precedes the fluorescence or Raman emission the direction of emission 

of the photon will be at random. Then the procedure of isotropic scattering can be used, see section 4.5. 

This means that the polar angle  can be found from cos  = 1 – 2RN , where RN is a fresh random 

number. Now cos   is identical to the Z-component of the direction unit vector, and from that the other 

components can be found, using a random number between 0 and 2 to find .  

 

The polarisation direction will be randomised as well, which will randomise the components of the 

Stokes vector. The Stokes vector ST
0 , which starts the polarisation procedure in eq.(3.61), will now be 

defined on a local coordinate frame, with its Z-axis along the propagation vector of the photon and its 

X- and Y-axes perpendicular to that direction and to each other. Then the two components E// and E⊥ 

might be chosen at random, as long as they satisfy E//
2 cos2 + E⊥

2
 sin2 =E0

2, where   is the angle of 

the electric vector in the XY-plane with the X-axis.  
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6.   Detection. 
 

Normally the detection of emerging photons will take place at the surface, either at the top or at the 

bottom of the sample. We will denote these external detection options as “reflection” and “transmission” 

respectively.  

Another way of detection is to make use of  “internal” detectors. Here the photons are supposed to end 

their path at a certain position inside the sample.  

 

A general property for both options is the presence of a limited Numerical Aperture (NA), with NA = 

sinD , where D is the (half) opening angle of the detection cone. NA ranges from 0 (pure pencil beam) 

to 1 (all incoming angles accepted). Its value can be set in the program. 

 

The program stores the place of detection of the photon (x,y,z-coordinates) and the direction angles ( 

and ) with respect to the external laboratory coordinate frame. It also stores the number of scattering 

events and the percentage of Doppler scattering events. It also stores the resulting Doppler frequency 

and the path length, either geometrical or optical. The latter is corrected for wavelength changes due to 

changes in the refractive index, by multiplication of the local contribution to the path with the refractive 

index of the local medium. 

 

 

6.1. External detection. 
 

In the case of external detection, either reflection or transmission, the photon is assumed to be detected 

if 

• It passed the detection plane in the proper direction. This implies that the photon indeed has crossed 

the final interface between the sample and the medium where the detector is. This is to be decided 

using the proper Fresnel relations (see above), 

• It passed that plane within the borders of the “detection window”. This window can be chosen 

rectangular, circular or ring-shaped.  

 

Contrary to what is mentioned above, with external detection the program does not store the z-coordinate 

of detection, but the average depth of all scattering events along the path, or (as desired) the maximum 

depth along the path.  

 

 

6.2. Internal detection. 
 

With internal detection two options are present, one at the interface between two layers, and one at the 

internal interface of a structure (or “object”), like a sphere or cylinder.  

• The first option is handled in the same way as with external detection, using “reflection” and 

“transmission” to denote the interface crossing direction necessary for detection.  

• The second option is more complicated. This is elucidated in Fig. 21, where the situation is sketched 

for a sphere, as an example. A cylinder can be described analogously. 
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With the definitions as in Fig.21 the calculation of the position and direction angles proceeds as 

follows: 

(1).  q = n  ez , 

(2).  m = q  n , 

(3).  d = arccos (n • k),        (6.1)  

(4).  k// = k – n .cos d = k – n.(n • k) , 

(5).  d =(1/|k//|).  arccos (m • k//) , 

(6).  p’ = p – rM = R . n , 

(7).  p = arccos (p’• ez) , 

(8).  p’// = p – ez . cos p , 

(9).  p = (1/|p’//|). arccos ( p’// • ex) . 

 

Expressing k from the (X’,Y’,Z’)-frame into the (X,Y,Z)-frame is as follows (Fig.22): 

 

  k = sin’.cos’.ex’ + sin’.sin’.ey’ + cos’.ez’,  

  ex’ = cos0 .cos0 .ex + cos0 .sin0 .ey - sin0 .ez     (6.2) 

  ey’ = - sin0  .ex + cos0  .ey 

  ez’ = sin0 .cos0 .ex + sin0 .sin0 .ey + cos0 .ez 

 

The program offers the options to record internally detected photons in “reflection” mode (i.e. 

with direction angles  > /2) or in “transmission” mode ( < /2). It also allows calculating 
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Fig.21. Internal detection at the inside of a spherical surface. The vectors p’, k and n denote 

the position vector (relative to the origin of the sphere), the direction vector and the normal 

on the surface respectively. The vectors n, m and q represent the local coordinate frame at 

the detection point P, with m in the plane spanned by n and the Z’-axis, and q // n  m. All 

vectors except p’ are here considered to be unit vectors. The subscripts p and d denote 

“position” and “direction” respectively. 
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the direction angles at the point of detection in both coordinate frames (laboratory frame and 

local frame). See Fig.23. 

 

 

6.3. Sampling of photons. 
 

For the sampling of photons some options for the maximum number of photons can be set: 

• Emitted photons, 

• Injected photons, 

• Detected photons. 

In all cases we consider photons to be detected only when arriving at the plane of detection within the 

detection window (rectangular, circular or ring-shaped). The difference between the options “emitted” 

and “injected” is due to the chance of reflection of the incoming beam at the surface of the sample and 

will be determined by the Fresnel relations. 

 

Besides the recording of all properly detected photons, there exists also the option of recording the 

position of the photons during their paths, thus performing time-of-flight tracking. This can be done at 

a number of presettable time points, and the photons are stored in files similar to the files with detected 

photons. 

k 

Y’ 
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Z’ Z  

X  Y  

’ 

’ 

0 

0 

Fig.22. Expressing k from the (X’,Y’,Z’)-frame into the (X,Y,Z)-frame. 
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6.4. Photon path tracking 

 

The tracking of the path of the photon, i.e. recording the coordinates of the scattering events and of the 

intersections with interfaces, can easily result in enormous files. Consider a typical case of scattering in 

tissue, with a scattering coefficient s of about 10-20 mm-1 and a g-factor (average of the cosines of the 

polar scattering angles) of about 0.80 – 0.90. Then in each mm of the path about 1/s  10 scattering 

events will take place. However, due to the large g-factor the scattering will be predominantly in forward 

direction and it will only be after about 1/s’  1 mm that the direction of the photon can be considered 

as randomised. When detecting “reflected” photons, the path length of the photons will depend on the 

distance d between the point of injection of the light in the sample and the point of detection. For 

homogeneous samples the average depth in the middle of that distance is about ½d, and the average 

smoothed path length for perpendicular entrance and exit will be ½d. However, the actual paths are 

very irregular and the actual path lengths can range from about that value to tens or hundreds times as 

large. This means that in most cases the number of scattering events will be very large. As an example, 

for a thick homogeneous medium with s’ = 1 mm-1 and without absorption the average path length will 

be about 6d, which for d = 2 mm means about 120 scattering events, thus per photon at least 120 x 3 x 

4 bytes = 1440 bytes. A typical simulation needs at least 104 photons, and thus in total 1440 Mbytes. 

Therefore, in those case it is better to register only part of the events, namely those at intervals of 1/ s’ 

= 1 mm, which will decrease the storage space to 144 Mbytes per simulation. 

Therefore, the program offers the options of recording the paths at intervals of 1/ s or 1/ s’. 

 

Photons originating from a pencil beam and emerging at equal distances d from the point of injection 

but at different positions on that ring are equivalent. However, visualisation of those tracks will end up 

in an un-untwinable bunch. Therefore, to clarify viewing we may rotate the whole paths around the axis 

Fig. 23. Internal detection at the inside of a sphere. Settings: detection of photons 

arriving at the transmission side of the sphere only. 
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of the pencil beam to such an orientation as if the photons all emerged at the same position on the ring, 

e.g. the crossing point with the X-axis. This particular rotation is given by 
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       (6.3) 

 

See Fig. 24 for an example of the path tracking  method. 

 

      

Fig. 24. Photon path tracking:  Photon “bananas” arising by scattering from beam entrance point 

to exit area (between 5 and 6 mm). For clarity, all photon paths were rotated afterwards as if the 

photons had emerged on the +X-axis. 
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7.  Special Features. 
 
We now will describe some special features that are incorporated in the program. Laser-Doppler 

Flowmetry is the oldest feature, built in from the beginning of the development of the program, and 

meant to support measurements of Laser-Doppler Perfusion Flowmetry in tissue. Photoacoustics has 

been added to simulate the acoustic response to pulsed light. Frequency modulation is a modality adding 

extra information using path length-dependent phase delay information. 

 

 

7.1. Laser-Doppler velocimetry 

 

(1).  Introduction 

Laser-Doppler Flowmetry (LDF) makes use of the Doppler effect encountered with scattering of 

photons in particles when those particles are moving. In Fig. 25 the principles are shown. Using the 

definitions of the variables given in that figure, the Doppler frequency is given by 

 

( ) vkk •−= 0sD         (7.1) 

and with 

 
2
1sin.2k=k ,        (7.2) 

we find 

 


cos.sin
2
1

kv
fD =  .       (7.3) 
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v 

k = ks-k0 

 

 

Fig. 25. Principles of Laser-Doppler Flowmetry. The particle has a velocity v. Vectors k0 

and ks denote the incoming and scattered light wave vectors, and k is the difference vector. 
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Fig. 26. A typical Doppler frequency spectrum as measured with LDF 

tissue perfusion (positive frequencies shown). 
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When applied to tissue, frequently the angles  and  might be considered randomised. This is due to 

three reasons: 

• Preceding scattering by non-moving particles might cause the direction of the photons to be 

randomised upon encountering moving particles; 

• Most important moving particles are blood cells in capillaries. Due to the (more or less) random 

orientation of the capillaries the velocities will have random directions; 

• Travelling from injection point to detection point, in general the photons will encounter many 

Doppler scattering effects, with random velocities and orientations. 

All three effects will broaden the Doppler frequency distribution, which ideally would consist of one 

single peak, to a smooth distribution as in Fig. 26. This means that it is not possible to measure the local 

velocity, but we only may extract information about the averaged velocity over the measuring volume. 

The averaging concerns the three effects mentioned above. 

 

There are two options to record these LDF-spectra: homodyne and heterodyne, depending on the 

relative amount of non-shifted light impinging on the detector. The first is the mutual electronic mixing 

of the Doppler-shifted signals, and the second is the mixing of those signals including mixing with non-

shifted light, which can be overwhelmingly present. The resulting frequency and power spectra (which 

is the autocorrelation function of the frequency spectrum) will look as sketched in Fig.27.  

   

To characterize the frequency spectra use is made of moments of the power spectrum, defined as 
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and the reduced moments 
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The zeroth moment is the area under the power spectrum itself, and can be considered as proportional 

to the concentration of moving particles in the measuring volume. Bonner and Nossal [ref] showed that 

the first moment M1 is proportional to the averaged flow, while the ratio of the reduced moment M1’= 

M1 / M0 will be proportional to the averaged velocity. Analogously, the reduced moment M2’= M2 / M0
 

2 will be proportional to the average of the velocity-squared. 

All three moments may be calculated within the package. 

 

(2). Construction of the Doppler power spectrum. 

For the construction11 of the Doppler power spectrum from the frequency distribution all photons 

detected within the detection window will be sorted into a discrete frequency distribution N(i). Suppose 

we recorded ai photons in the i-th spectral interval (width  = 2f). This number is proportional to I 

(fi).f, where I is the intensity, which is proportional to |E2|, E being the electric field amplitude. 

Heterodyne 

peak 

0 0   

 f
 (


) 
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(

) 

Heterodyne 

 

Homodyne 

Fig.27. Homodyne and heterodyne frequency spectra f () and power spectra S(). 

Normally the heterodyne peak is much higher than the signals at non-zero frequencies. 
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where N+1 is the number of intervals, and j is the phase of the jth component. Since in the experiment 

we assume all photons to arrive at the same time, coherence between photons in the same frequency 

interval cannot be excluded. Therefore, ideally  should be so small that the only values for aj would 

be 0 and 1. However, to be able to work with tractable summations, aj is to be read as the probability of 

the photon to arrive in that interval.  

A square-law detector will at time n.t measure a current I proportional to E*E : 
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where c is a proportionality constant, cc stands for “complex conjugate” (to ensure that i is real) and  

is a constant related to the degree of coherence of the signals in the frequency intervals ( =1 for perfect 

coherence, but <1 when the detector area is larger than a single coherence area). Assuming that  is 

not frequency dependent, one can write 
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Now we rename v = p, and define k = w – v  and the factor fpk as 
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The Fourier transform S(t) of the power spectrum S() , defined as  
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can be written as  
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with  = 2/[(N+1).t].  We construct the power spectrum S(j) using 
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and find 
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Now, in the limit of N → , the phase factors will average out, except when their exponentials equal 

zero. Since the sum n + m appears in each exponential, in order to have the exponential equal zero for 

each combination of n and m the variables n and m must not be present in the exponentials. This is 

possible in the last term only, under the condition that k = k’ = j : 
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Since 0  k  N - p , with  k = j , it follows that N – p  j or p  N – j. Then 
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and 
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Now, suppose that all photons arrive at the detector with equal phases. Then the exponential in eq.(7.16) 

becomes zero, and 
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However, in general the photons will have different phases due to their different path lengths. The 

measured power will be the expectation value of eq. (7.16) averaged over all phases. Thus for the term 

in eq. (7.16) with p and p’, the expectation value will be zero unless p = p’. This leads to 
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This is the general expression for the calculation of the power spectrum from the simulated frequency 

distribution. 

In the case of heterodyne detection, where one of the spectral components (normally that at zero 

frequency, set p = 0 for that frequency) is much more intense than all others, eqns. (7.17) and (7.18) 

will lead to the same result: 
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(3). Implementation of velocity profiles. 

 

For the velocity profiles of the scattering particles following options are available: 

• Velocity direction along X-, Y- or Z-axis, or (in case of oblique objects) along the object axis. 

• Velocity direction randomised for each scattering event, with all particles equal velocities. The 

direction is determined with a similar procedure as with isotropic injection of light (see section 5.4). 

• Profiles can be uniform (equal velocity for all particles), or parabolic (in tubes and rectangular 

objects only), or they can have a Gaussian distribution. 

With the parabolic distribution the actual velocity is calculated according to 
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with v0 as the average velocity value over the profile, r as the position of the particle with respect to 

the symmetry axis of the tube or object, or the mid plane of the layer when relevant, and R as the 

radius of the tube, or the distance between the adjacent interfaces . 

The Gaussian profile is handled using a cumulative function for the Gaussian profile. Here the 

standard deviation is expressed in a percentage of v0 , being the maximum velocity in the profile. 

The actual value of the velocity is determined by equalling a fresh random number to that cumulative 

function. 
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7.2. Photoacoustics. 
 

With photoacoustics (PA) short light pulses are injected in the sample. At positions where absorbing 

particles are present, part of the light will be absorbed. Due to the short duration of the pulse, the particle 

will heat up adiabatically. Normally this would result in volume dilatation, but since the surrounding 

medium is not heated, this dilatation will be prevented and a pressure shock wave will result. Some 

authors have investigated this mechanism. A review and some new theoretical aspects can be found in 

Hoelen’s thesis and papers 25-28.  

Typical values for the duration (FWHM) of the light pulses and the amount of energy to be injected are: 

15 ns and 1 mJ/cm2. With this values a safety factor of 20 from the European maxima for human tissue 

irradiation with this type of light pulses is maintained. Using a sound velocity of 1500 m/s this 

corresponds to a distance of 22.5 m. 

The PA-response of a spherical source on a short laser pulse is given by: 
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with r as the distance from PA-source to the detector, r0 as the source radius, t as the time after the pulse 

and v as the acoustic velocity. Since for the calculations in this program we only have to deal with 

relative values, we have incorporated variables describing the dilatation, the heat capacity and the heat 

conduction of the source, and the laser pulse energy in the constant C.  

This function is a bipolar function, as in Fig.28. 

 

 

 

Fig. 28. Bipolar PA-pulse response:  function P = x. exp (-x2/x0), with –10 < x < 10 and x0= 5.  

 

We suppose that the sample can be subdivided into many 3D-voxels, which may serve as elementary 

PA-sources, provided light absorbing material is present. The voxels are supposed to be cubical, with 

sides da. It can be shown that the peak-peak time, i.e. the time pp between the positive and negative 

peak of the bipolar pulse, is given by 

 

( ) ( ) 22222
222)2( eslpp  =+==      (7.22) 

where l is the standard deviation of the laser pulse, s is that of the source voxel,   is that of the bipolar 

pulse and e is the effective pulse length.. The value of l is given by FWHM / [2 (2.ln2)], with FWHM 

as the full width at half maximum of the (Gaussian) laser pulse.  For a cubical voxel, s is given by s 

= da /( 22.v), with da /2 as the effective diameter of the heat source element.  

 

The expression for the pressure given by eq.(7.21) has to be adapted for ultrasound attenuation during 

the time-of-flight to the detector. This will result in the corrected pressure pulse P’(r,t): 

-10 -5 0 5 10
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where US is the ultrasonic attenuation coefficient. This coefficient is slightly dependent on the 

ultrasound frequency. Here we take it as a constant, in view of the broad frequency bandwidth of the 

PA-pulse. 

This function has been implemented in the program, with C =1. The pressure pulse is calculated as 

originating from the centre of the source voxel and arriving at the centres of the elements of the detector 

array. Therefore, the resulting pressure signal has to be multiplied with the area of the detector element, 

and normalised to the volume of the voxel. However, in reality with elements that are not “small” , due 

to phase differences upon arrival of the pressure pulse at different positions on a detector element, some 

destructive interference might be present, which will decrease the multiplication factor. We may correct 

for this effect in two ways: 

• The detector elements are at first chosen very small (i.e. much smaller than the wavelength of the 

sound) and are afterwards grouped to larger detector elements, taking into account the phase 

differences between the centre points of the constituting elements in the group, for each voxel; 

• The contribution from individual PA-sources to individual detector elements is corrected using the 

Directivity, or the Numerical Aperture function, of the detector element. Normally this is a 

Gaussian function, centred along the symmetry axis perpendicular to the element, with a certain 

opening angle given by the dimensions of the element and the characteristics of the laser pulse. 

In the program both methods are implemented. For the Directivity a Gaussian, uniform or triangular 

function can be chosen. The groups are built from rectangles of single elements. See Fig.29. 

 

 

 

Fig. 29. Photoacoustic response at a 7 x 7 - detector array of a sample consisting of several absorbing 

objects in a scattering (but not absorbing) medium. 
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7.3. Time-of-flight Spectroscopy and Frequency Modulation. 
 

A relatively new branch of the art of light scattering in tissue is time-of flight resolved scattering. The 

general idea is to distinguish between photons on the basis of their paths in tissue. This can be of help 

to elucidate the distribution of the optical properties, for instance when dealing with samples consisting 

of various layers. 

There are two main methods: 

• Time-of-flight spectroscopy, in which the photon paths are registered using time-resolved detection, 

e.g. with ps- or fs-lasers and an ultrafast camera like a streak camera, or by using ultrafast time-

windowing using Kerr’s cells. A typical time is 3 ps for 1 mm resolution (light velocity = 3x108 

m/s). 

• Frequency Modulation spectroscopy, where the light source is modulated at very high frequencies, 

and the phase differences are recorded between photons arriving at the same detection point but 

after having travelling over different paths. The frequency range in use starts at 100 MHz and stops 

nowadays at about 1-2 GHz. For 100 MHz a path length difference of 1 mm will result in a phase 

difference of about 0.1 degree. 

 

The first option of Time-of-flight spectroscopy has been taken care of in two ways: 

• By implementing the possibility to register the positions of the photons at certain presettable time 

points during the scattering process; 

• Using the option of analysing the registered time-of-flight distributions, that can be calculated form 

the simulated paths lengths (geometrical or optical) of the detected photons. 

 

The second option of Frequency Modulation spectroscopy uses simple Fourier transformation of the 

path length distribution. For this purpose the path length distribution is translated into a time-of-flight 

distribution, using the local light velocities. The Fourier transform of this distribution will result in the 

frequency response. When denoting that Fourier transform with Fj (), we can deduce for the phase 

delay j () and the AC/DC modulation depth mj (): 
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For the actual transform we may use the possibility of enlarging the number of points n in the time-of-

flight distribution to an integer power of 2, named N, by filling the new points with zeros. Then Fast-

Fourier transform algorithms will become possible. In doing this, the step size in the frequency spectrum 

will be smaller. When the time step in the time-of-flight distribution is given by t, then the maximum 

frequency is fmax = 1 / (2t) and the frequency step is f = fmax / ( ½N ) = 1 / (N.t). This factor 2 is 

included due to the aliasing effect of this type of Fourier transform, by which the frequency spectrum ( 

f = 0.. fmax ) is folded out and copied to f = fmax ..2fmax. 

The program also offers facilities to calculate frequency modulation spectra using literature models, 

based on the diffusion approximation of the Radiative Transfer Equation, from Haskell et al. 8 for one-

layer samples and Kienle et al. 9,10 for two-layer samples. Here we only list their results as far as 

implemented in the program.    

We will use the notation (a and t are the absorption and total scattering coefficients: t = a+ s’, and 

 is the frequency): 
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For small frequencies these functions can be approximated by 
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Haskell et al. calculated five models, (a) through (e), for the one-layer case, and Kienle et al. added a 

general model (f) for the two-layer case. These models are implemented in the program. 

 

(a). Infinite medium. 

 

( ) rqkmrk RI 2exp; −−==      (7.26a) 

 

where r is the source-detector distance and q = (3a t /2) . 

Using eq.(7.25b) we may see that for small frequencies  will start linear with  and m will start as a 

(slowly decreasing) constant. When  increases, the slope of  will decrease gradually and the value 

of m will decrease as well. 

 

(b). Semi-infinite medium, taking refractive index differences at the interface into account. 
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with D, I and R complicated functions of r, a , t and of the refractive indices and the refraction 

angles. 

 

(c). Semi-infinite medium, without interface correction. 
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with r0
2 = r2+(1/t )2 . 

 

(d). Extrapolated boundary condition, where the interface has been shifted over a distance dependent of 

the refractive indices at the interface (see Haskell et al. 8  for this and following models). 

(e). Partial Current and Extrapolated Boundary Unification.  

(f). Two-layer model (Kienle et al.9,10).  
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8.   Output Options. 
 

The program offers several possibilities for output of the data. Apart from various ways to write photon 

data and corresponding statistics to file, we have several plot options. They will be described below. 

All plots can be exported in the form of *.BMP-files. 

 

 

8.1. Parameter plots. 
 

The fastest way of plotting data is using parameter plots of photon distributions, in which the number 

of photons is plotted as a function of one out of a set of variables. These variables are: 

(a) X- , Y-, or R- position at detection or at plane-crossings (see below; R is the radius of the circle 

around central Z-axis),  

(b) (R-position)^2 (as above), 

(c) Path length or Time-of-flight distribution, followed by Phase and Modulation depth spectra 

using Frequency Modulation Spectroscopy, 

(d) Polar angle  or azimuthal angle  of the photon direction at the detection point, 

(e) Z-position: several options (the averaging <..> is performed over all detected photons): 

• Depth (in absorption mode or with photons-in-flight at plane-crossing points), 

•  <Scattering depth> (in reflection or transmission mode), 

•  Maximum scatter depth,  

• <Doppler scattering depth>  (Doppler-scattering events only),  

(f) Number of scatter events (or number of plane crossing),  

(g) Number of Doppler scatter events, 

(h) Doppler frequency, 

(i) With Internal detection: Polar and azimuthal angles  and  ,  

(j) Paths: crossings with X=c planes 

(k) Paths: crossings with Y=c planes 

(l) Paths: crossings with Z=c planes 

(m) Paths: crossings with R=c (cylindrical) planes.  
 

Intensity plots 

Normally we may choose for plotting of photon distributions, as a function of one of the variables. 

However, in case the variable is R or R2 we have the option for plotting the intensity instead, thus 

dividing distribution function by 2R.dR, with dR as the interval width of the horizontal variable. 

We also have the option for comparing simulated intensity plots with theoretical ones. Several models 

are available for that purpose. See section 8.4 (1) and Fig. 30. 

 

Intensity plots can be on a linear scale, or logarithmic, or in polar form. 
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Fig.30. Example of output plots. Here ln (Intensity) vs. R-position from the Z-axis. Also 

included: a model approximation (solid line). 
 

Parameters. 

In addition to their role as horizontal variables in the distribution plots, all variables may also be used 

as parameters in the plots. For instance, suppose we divide the value region of a parameter into n 

intervals. This will result into n lines in the plot.  

There are two layers of parameters, the first offers the option of shifting the lines horizontally over a 

certain value, the second vertically. We also may choose the option “Compare Files”, by which different 

files (simulations) can be compared directly, as the second parameter. 

 

Plane-crossing intersections.  

With the options “path tracking” the intersection points of the photon paths on their travel from source 

to detection point, with a set of planes perpendicular to the direction of the photons as seen at the surface, 

are recorded. The average coordinates of those intersections are calculated. 
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For instance, when photons are tracked, for which the detection point lies at the surface on the X-axis, 

the crossing planes are defined parallel to the X-axis, ranging from the injection point to the detection 

point, and the Y- and Z-coordinates of those intersection points are recorded and (afterwards) averaged. 

This might be clarified with Fig. 31. 

Results are presented in Fig. 32. 

 

              

Fig. 32. Paths tracking: Averaged depths of photons, with standard deviation in the average. 

Settings: see fig. 5. Plot for distance > 5.5 mm is due to spurious photons. 

 

In order to enhance the efficiency of the simulation process, photons emerging at positions with equal 

radii to the injection point, might be taken together by rotating the whole path until an orientation as if 

the photon were emerging at that radius on the X-axis. See section 6.4.   

The options for crossing planes are: flat planes perpendicular to the X- and Y-axis, and cylindrical planes 

around the central Z-axis at the injection point. 

x 

y 

Fig 31. Example of recording of path tracking of the photons, in which the photons are 

meant to emerge through a small window at the X-axis. The arrows indicate the injection 

and detection points. For analysis, we define a set of planes perpendicular to the X-axis 

and record the Y- and Z-coordinates of the intersections. Since photons can take steps in 

all directions, they might cross some planes more than once.   
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All plots can be made on a linear or logarithmic scale, and in the form of lines or symbols or both. We 

may choose for the option of n-points quadratic smoothing.  

 

Normalisation. 

The plots may be normalised on their own maximum, or on the highest maximum of the set, or on the 

maximum of the first curve. We also may normalise on the number of detected, or injected or emitted, 

photons. 

 

Doppler Frequency handling. 

The distributions as a function of the Doppler frequency, the “frequency distribution” may be converted 

into “power spectra” using the formalism described in section 7.1 (2). From those spectra we may have 

the program calculate the moments of the power spectrum, as discussed in section 7.1 (1).   

 

8.2. Scatter plots. 
 

In addition to the distribution and intensity plots as described above, an option of producing “scatter 

plots” is present, in which the values of a second variable are on the vertical axis. The individual photons 

can be plotted as points, or their average values (per X-axis interval) as symbols or lines.  

 

Again we have the opportunity to divide the set of points in subsets corresponding with different values 

of (two) parameters. The points belonging to different parameters are presented with different colours. 

We also may choose for horizontal or vertical shifting per parameter value. See fig.33. 

 

Fig. 33. Scatter plots of two samples, consisting of 1 layer with s’ =1 mm-1; a = 0 (upper) and 

0.1 (lower) mm-1 respectively. Plotted: Path length vs. detection position. In both cases 10000 

photons recorded. Higher absorption results in a broader path length distribution. 

 

8.3. 2D/3D-plots. 
 

Another plot option is to produce 2D- or 3D-plots, based on the border values  

See Figs.34 and 35. 
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Fig.34. Example of 2D-plot: Here the maximum photon depth plotted as function of (x,y)-

position. 

 

 
 

Fig.35. 3D-plot of Path tracking: photon “bananas”: average depths of photon paths. Entrance 

at position 0; photons emerging between positions 5 and 6 mm from entrance. Normalisation 

per frame. 
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8.4. Approximations. 
 

As a final step in the simulations one may want to compare the simulated results with theoretical curves. 

For this purpose we included several options in the program. The first option is to compare intensity 

data with published results of theoretical models based on the Diffusion Approximation. The second is 

to fit Doppler power spectra with exponential curves. 

 
(1). Intensity approximations 

 

In literature several approximate curves for the intensity as a function of the source-detector distance 

were investigated. Most important are those of Groenhuis and Ten Bosch 4, Bonner and Nossal 5, 

Patterson et al 6, and Farrell et al. 7. Here we will deal with those models and give their results. 

 

Ishimaru 2,3 notes for the light output as a function of the source-detector distance r : 
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where I(r) is the energy fluence rate (in W/m2) or the photon fluence rate (in m-2s-1), depending on the 

definition of P, being the injected power (in W) or the number of injected photons (in s-1) , n is an 

exponential depending on the underlying physical model, and eff is a characteristic “effective” 

attenuation coefficient, given by 
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There is some dispute about the value of the variable n. According to the Diffusion Approximation n 

should be unity. However, Groenhuis et al. 4 arrive at n = ½, on the basis of a simple scattering model 

consisting of a combination of an isotropic scattering term and a forward scattering term. Bonner et al. 

use a probabilistic lattice model and derive an expression with n = 2. Using an expression for the time-

of-flight intensity for homogeneous slab samples, Patterson et al. published a model containing effective 

light sources at depths z0 + k.d (d = sample thickness; k= 1,2…) together with negatieve image sources 

at –( z0 + k.d) to ensure zero light flux at the surface: 
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where 
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with D being a diffusion constant, and z0 = = 1/s’. 

However, when integrating this function over volume, two singularities arise, at z =  z0 . This problem 

was tackled by Rinzema and Graaff 29 who included non-scattered photons. This leads to a change: 
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and it is seen that, as in Bonner’s model, a term with n =2 is present. In eq.(8.4) t = s + a  , a’ = s 

/t (albedo) and Da = a /0 , with 0 is  the positive root of  
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The model of Patterson et al. was extended by Farrell et al 7 who starting from assuming an effective 

source at z=z0 = 1/ (a+ s’) (with corresponding negative image source at –z0), calculated the photon 

current leaving the tissue as the gradient of the fluence rate at the surface times D, and arrive at 
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with 
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The depth correction zb arises from taking refractive index mismatch at the surface interface into account 
30,4 
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and  

 rd = -1.440 nrel
-2 + 0.710 nrel

-1 + 0.668 +0.0636 nrel.    (8.5d) 

 

An example of the Farrell model is given in Fig.36, in which a Monte-Carlo simulation for a typical 

situation is compared. 
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Fig.36. Comparison of the Farrell-model with simulations, for a one-layer semi-infinite sample 

with s = 1 mm-1 and a = 0.01 mm-1. In simulations: Henyey-Greenstein scattering function, g 

= 0.90. Detected photons: 50000. Detection window radius: 0-12 mm. Ratio of reflected vs. 

injected photons: in the simulation: 0.748, in the model: 0.749. 

At small r-values deviations occur due to the limited applicability of the Diffusion 

Approximation in that region.   

 

This model is implemented in the program, together with the simple model given in eq. (8.1), for 

different values for n.  

Farrell et al. also extended the model given above by assuming that the effective source extends along 

the Z-axis, obeing a Lambert-Beer-like attenuation law with a +s’ as the attenuation coefficient, but 

this results in expressions that are not very tractable. 

 

Total reflection. 
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The approximations given above can be integrated over the surface., using 
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and this will lead to 
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and for the Farrell-model 
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with a’ as the reduced albedo: a’ = s’/(a+s’). It turns out that the correspondence of the Farrell model 

with simulated data, for values of the optical constants typical for tissue, is rather satisfactory. This is 

reflected in Fig. 37, where the ratios of reflected and injected photons in the simulation and in the model 

are compared. 

 
Fig. 37.Comparison of the ratio of reflected vs. injected photon numbers, calculated with the Farrell 

model and with  Monte-Carlo simulations.  

Upper panel: varying absorption coefficient a ; s= 10.4 mm-1; g = 0.90; s’=1.04 mm-1. 

Lower panel: varying reduced scattering coefficient s’ ; g = 0.90; parameter: a [mm-1]. Here the 

difference for zero absorption and low scattering may be caused by the limited thickness of the 

sample (65 mm). 

 

 

(2). Doppler power spectrum approximations.  
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In section 7.1 the option of including particle velocities, leading to Doppler frequency spectra, was 

treated. In section 8.1 the possibility for calculating the moments of the Doppler power spectra was 

mentioned.  

The program offers the option of fitting those spectra with pre-defined functions, since Bonner [ref] 

showed that sometimes these spectra might correspond to simple Lorentzian or Gaussian time functions. 

 

For a Gaussian function, suppose the frequency distribution f() looks like 

 

 )/exp()( 22 sf  −=         (8.8a) 

 

as is known with interval , then the homodyne power spectrum (for   0 only!) will have the form 
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and so the maximum (at =0) and the width of S() will be (/2).s.  and 2 (= 1.414) times the 

maximum and the width of f(), respectively.  

The moments are listed below, in Table 1. 

 

For a Lorentzian function, suppose the frequency distribution f() is given by 

 

 )/||exp()( sf  −=         (8.9a) 

 

then 

 ,)/exp()()(  −+= ssS       (8.9b) 

 

and the maximum and the width of S() will now be s.  and 1.67835 s respectively, while those of 

f() are: 1 and s.ln2 (=0.69315 s) respectively, a broadening with a factor of 2.4213. 

 

Table 1. Moments of Lorentzian and Gaussian Power Spectra.  (after integration over  from 0 to ) 

 

model M0 M1 M2 M1/M0  (M2 /2M0) 

Gaussian ½ s ½ s2 
¼ s3 s /  ½ s 

Lorentzian s s2 2 s3 s s 
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9.  Conclusions. 

 
 

We have described the physics and mathematics behind the Monte-Carlo light scattering simulation 

program as developed in our group. It offers a large number of options and extra features. Among the 

options are: to include various structures, like tubes and spheres, in the layer system, to work with 

different concentrations of particles with different optical characteristics, to investigate reflection, 

transmission and absorption, to study path-length and time-of-flight distributions, to include frequency-

modulation spectra and ultrafast transillumination phenomena, to handle Doppler frequency shifts upon 

scattering at moving particles, to calculate photoacoustic response from sources of absorbing particles, 

to perform Raman- and fluorescence spectroscopy. The light source might be a pencil beam, a broad 

parallel beam or a divergent beam, from an external or an internal focus, or photons produced at the 

positions were (in previous simulations) photons were absorbed. 

The output options include: distribution plots of a number of variables, like the position of detection, 

the angles at detection, the number of scattering events, the path length (either optical or geometrical), 

the Doppler frequency shift. Detection might occur in reflection and transmission, i.e. at the surface or 

at the bottom of the sample, or internally, e.g. at the inner surface of an embedded sphere. 

In addition to the simulations, a number of approximations is present, namely for the Doppler power 

spectra, the intensity curves and the frequency-modulation distributions of the phase and the modulation 

depth. 
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