Gauss' Law for Planar Symmetry

© Frits F.M. de Mul

Presentations:

- Electromagnetism: History
- Electromagnetism: Electr. topics
- Electromagnetism: Magn. topics
- Electromagnetism: Waves topics
- Capacitor filling (complete)
- Capacitor filling (partial)
- Divergence Theorem
- E-field of a thin long charged wire
- E-field of a charged disk
- E-field of a dipole
- E-field of a line of dipoles
- E-field of a charged sphere
- E-field of a polarized object

- E-field: field energy
- Electromagnetism: integrations
- Electromagnetism: integration elements
- Gauss' Law for a cylindrical charge
- Gauss' Law for a charged plane
- Laplace's and Poisson's Law
- B-field of a thin long wire carrying a current
- B-field of a conducting charged sphere
- B-field of a homogeneously charged sphere

Gauss' Law for Planar Symmetry

Available:

Thin flat plane, infinitely large, covered with homogenous surface charge density σ [C/m²]

Question:

Calculate *E*-field at arbitrary points at both sides of the plane

- Analysis and symmetry
- Approach to solution
- Calculations
- Conclusions

Analysis and Symmetry (1)

- 1. <u>Charge distribution:</u> σ [C/m²]; homogeneous.
- 2. Symmetry:

Z-axis = symm. axis,

perpendicular to plane.

- 3. <u>Plane</u>: infinitely large.
- 4. Front & backside are

equivalent.

Analysis and Symmetry (2)

- 5. Charge distribution:
 - σ [C/m²] ; homogeneous.
- 6. <u>Plane A</u> // charged plane:
- 7. All points P equivalent
- 8. <u>Point charge</u> in *A*: will not move // *A*

due to symmetry

- 9. \underline{E} : Z-component only !!
- 10. \underline{E} : uniform field
- 11. All A-planes equivalent

Analysis and Symmetry (3)

12. Backside:
similar situation
13. Conclusion from
<u>symmetry:</u>
uniform fields;
opposite directions

Gauss' Box (1)

uss' Law:
$$\int_{A}$$

$$\iint_{A} \boldsymbol{E} \bullet \boldsymbol{dA} = \frac{Q}{\varepsilon_{0}}$$

Choose Gauss-box A. How to make optimum use of symmetry ??

- where *E* // *dA*
- where $E \perp dA$
- where E = 0 ??

closed box needed !! closure at backside necessary !!

Gauss' Box (2)

Gauss' Law: $\iint_A E \bullet dA = \frac{Q}{\varepsilon_0}$

choose Gauss-box:

sides do not contribute.

only front and back lids contribute :

 $E_1A_1 + E_2A_2$ ($A_1 = A_2$)

charge enclosed: σA_1

result: $E_1 = E_2 = \sigma / (2\epsilon_0)$

Conclusions

for infinite plane:

$$\boldsymbol{E}_P = \frac{\sigma}{2\varepsilon_0} \boldsymbol{e}_z$$

field strength independent of distance to plane =>

homogeneous field

theeendd