Electric field of a Polarized Object

© Frits F.M. de Mul

Presentations:

- Electromagnetism: History
- Electromagnetism: Electr. topics
- Electromagnetism: Magn. topics
- Electromagnetism: Waves topics
- Capacitor filling (complete)
- Capacitor filling (partial)
- Divergence Theorem
- E-field of a thin long charged wire
- E-field of a charged disk
- E-field of a dipole
- E-field of a line of dipoles
- E-field of a charged sphere
- E-field of a polarized object

- E-field: field energy
- Electromagnetism: integrations
- Electromagnetism: integration elements
- Gauss' Law for a cylindrical charge
- Gauss' Law for a charged plane
- Laplace's and Poisson's Law
- B-field of a thin long wire carrying a current
- B-field of a conducting charged sphere
- B-field of a homogeneously charged sphere

Electric field of a Polarized Object

Available:

An external E-field: E_{ex} .

A dielectric object will become polarized.

Question:

Calculate *E*-field produced BY (not: IN) the polarized object.

Electric field of a Polarized Object

- Analysis and symmetry
- Approach to solution
- Calculations
- Conclusions

Analysis and Symmetry

Coordinate axes:

assume Z-axis // $\boldsymbol{E_{ex}}$

Result of polarization:

Dipole distribution:

n dipoles/m³; each dipole moment p [Cm]

Dipoles will be directed along

$$E_{ex}$$
: $p // E_{ex}$

n and p homogeneous

Approach to solution

Question: calculate E-field in arbitrary point P outside v

Approach:

- = calculate potential V;
- = E from V by differentiation

Distributed dipoles:

dV- integration over volume elements dv filled with dp.

Calculations (1)

volume element dv with $dp = np.dv = np.dS_{\perp}.dz$; with $dS_{\perp} \perp Z$ -axis

Dipole potential: $V = \frac{\mathbf{p} \cdot e_r}{4\pi \varepsilon_0 r^2}$

$$dV = \frac{dp\cos\theta}{4\pi\varepsilon_0 r^2}$$

$$=\frac{np.dS_{\perp}dz.\cos\theta}{4\pi\varepsilon_0 r^2}$$

Calculations (2)

$$dV \frac{np.dS_{\perp}.dz}{4\pi\varepsilon_0 r^2}\cos\theta$$

cross section through *P* and *Z*'-axis:

Calculations (3)

$$dV = \frac{np.dS_{\perp}.dz}{4\pi\varepsilon_0 r^2}\cos\theta$$

dz-integration \Rightarrow dr-integration :

$$dr = dz.\cos\theta \Rightarrow dz = dr/\cos\theta$$

$$\frac{dV}{dV} = \frac{np.dS_{\perp}.dr}{4\pi\varepsilon_0 r^2}$$

Calculations (4)

$$dV = \frac{np.dS_{\perp}.dr}{4\pi\varepsilon_0 r^2}$$

$$V = \iint_{S} dS_{\perp} \int_{r_{b}}^{r_{t}} \frac{np.dr}{4\pi\varepsilon_{0}r^{2}}$$

Def.: "Polarization" P = np

P in $[m^{-3}.Cm] = [C/m^2]$

$$V = \iint_{S} dS_{\perp} \frac{P}{4\pi\varepsilon_{0}} \left[\frac{1}{r_{t}} - \frac{1}{r_{b}} \right]$$

Calculations (5)

$$V = \iint_{S} dS_{\perp} \frac{P}{4\pi\varepsilon_{0}} \left[\frac{1}{r_{t}} - \frac{1}{r_{b}} \right]$$

di di

 $P.dS_{\parallel} = P.dS$

bound surface charges:

$$dQ_b = P.dS$$

$$V = \iint_{S} \frac{dQ_b}{4\pi\varepsilon_0} \left[\frac{1}{r_t} - \frac{1}{r_b} \right]$$

Conclusions

bound surface charges:

$$dQ_b = P.dS$$

Conclusion:

the field of a polarized volume is equivalent to

the field of **bound surface** charges (provided homogeneous polarization).

"Polarization" = bound surface charge density [C.m⁻²]