# Electric dipoles on a thin long line

© Frits F.M. de Mul

### Presentations:

- Electromagnetism: History
- Electromagnetism: Electr. topics
- Electromagnetism: Magn. topics
- Electromagnetism: Waves topics
- Capacitor filling (complete)
- Capacitor filling (partial)
- Divergence Theorem
- E-field of a thin long charged wire
- E-field of a charged disk
- E-field of a dipole
- E-field of a line of dipoles
- E-field of a charged sphere
- E-field of a polarized object

- E-field: field energy
- Electromagnetism: integrations
- Electromagnetism: integration elements
- Gauss' Law for a cylindrical charge
- Gauss' Law for a charged plane
- Laplace's and Poisson's Law
- B-field of a thin long wire carrying a current
- B-field of a conducting charged sphere
- B-field of a homogeneously charged sphere

### Electrical dipoles on a thin long line



#### Available:

Thin line, infinitely long, homogeneously filled with dipoles, each with dipole moment *p* [Cm]

#### Question:

Calculate *E*-field in arbitrary points around the line

## Electrical dipoles on a thin long line

- Analysis and symmetry
- Approach to solution
- Calculations
- Conclusions

### Analysis and Symmetry (1)



- 1. Cylinder: infinitely long and thin
- 2. <u>Distribution of dipoles:</u>
  - *n* dipoles / meter; homogeneous;
  - all directions uniform
  - each: dipole moment *p* [Cm]
- 3. Coordinate axes: X,Y,Z

Z-axis = symm. axis

4. Cylinder symmetry:

all points at <u>equal r</u> are equivalent, even if at <u>different z</u> or  $\varphi$ 

Line of dipoles

# Analysis and Symmetry (2)

Assume: field components of dipole field at some distance in point P are known.



#### Dipole:

$$E_r = \frac{2p \cos \theta}{4\pi\varepsilon_0 r^3}$$

$$E_{\theta} = \frac{p \sin \theta}{4\pi \varepsilon_0 r^3}$$

# Analysis and Symmetry (3)

#### Possible directions of the dipoles:



### Approach to solution



n = dipole density(per meter)

<u>Choose</u>: Point P at distance  $y_P$  from axis.

#### Use symmetry:

Dipole elements at +z and -z will contribute symmetrically

$$dp = n p dz$$

### Dipoles // X-axis

$$E_r = \frac{2p.\cos\theta}{4\pi\varepsilon_0 r^3}$$
;  $E_\theta = \frac{p.\sin\theta}{4\pi\varepsilon_0 r^3}$ 



$$d\mathbf{p} = n \mathbf{p} dz$$

Case 1:

all dipoles // +X-axis

 $\theta = 90^{\circ}$  for all dipoles

$$dE_r = \frac{2dp\cos\theta}{4\pi\varepsilon_0 r^3} = 0$$
$$dE_\theta = \frac{dp\sin\theta}{4\pi\varepsilon_0 r^3} = \frac{dp}{4\pi\varepsilon_0 r^3}$$

$$==> E // -X-axis$$

integration with 
$$r^2 = y_p^2 + z^2$$
:  $E_\theta = \frac{np}{2\pi\varepsilon_0 y_p^2}$ 

### Dipoles // Y-axis

$$E_r = \frac{2p.\cos\theta}{4\pi\varepsilon_0 r^3}$$
;  $E_\theta = \frac{p.\sin\theta}{4\pi\varepsilon_0 r^3}$ 



#### Case 2:

all dipoles // +Y-axis

Find directions of the field contributions *dE* 

| dipole                         | +z | <b>-</b> Z |
|--------------------------------|----|------------|
| $dE_r \sim \cos \theta$        | >0 | >0         |
| $dE_{\theta} \sim \sin \theta$ | >0 | >0         |

#### resulting vector:

==> E // Y-axis

### Dipoles // Y-axis

$$E_r = \frac{2p.\cos\theta}{4\pi\varepsilon_0 r^3}$$
;  $E_\theta = \frac{p.\sin\theta}{4\pi\varepsilon_0 r^3}$ 



$$dp = n.p.dz$$
 ;  $\theta_{+} = \theta_{-} = \theta$ 

#### Y-components:

 $dE_{r+}$  and  $dE_{r-}$ : each:

$$\left(\frac{np\ dz}{4\pi\varepsilon_0 r^3} 2\cos\theta\right)\cos\theta$$

 $dE_{\theta_{+}}$  and  $dE_{\theta_{-}}$ : each:

$$-\left(\frac{np\ dz}{4\pi\varepsilon_0 r^3}\sin\theta\right)\sin\theta$$

The integrations can be performed using standard integrals of rational functions. The resulting E-vector will be directed along the Y-axis.

### Dipoles // Z-axis

$$E_r = \frac{2p.\cos\theta}{4\pi\varepsilon_0 r^3}$$
;  $E_\theta = \frac{p.\sin\theta}{4\pi\varepsilon_0 r^3}$ 



#### Case 3:

all dipoles // +Z-axis

| dipool                         | +  | -  |
|--------------------------------|----|----|
| $dE_r \sim \cos \theta$        | <0 | >0 |
| $dE_{\theta} \sim \sin \theta$ | >0 | >0 |

#### resulting vector:

$$==> E // Z$$
-axis

### Dipoles // Z-axis

$$E_r = \frac{2p.\cos\theta}{4\pi\varepsilon_0 r^3}$$
;  $E_\theta = \frac{p.\sin\theta}{4\pi\varepsilon_0 r^3}$ 



$$dp = n p dz$$
$$\theta_{+} = \pi - \theta_{-}$$

#### **Z-components:**

### $dE_{r+}$ and $dE_{r-}$ : each:

$$\left(\frac{np\,dz}{4\pi\varepsilon_0 r^3}2\cos\theta_-\right)\cos\theta_-$$

### $dE_{\theta_{+}}$ and $dE_{\theta_{-}}$ : each:

$$-\left(\frac{np\ dz}{4\pi\varepsilon_0 r^3}\sin\theta_-\right)\sin\theta_-$$

The integrations can be performed using standard integrals of rational functions. The resulting E-vector will be directed along the Z-axis.

### Conclusions



$$dE = \frac{np \, dz}{4\pi\varepsilon_0 r^3} \left(2\cos^2\theta - \sin^2\theta\right) e_y$$

$$dE = \frac{np \, dz}{4\pi\varepsilon_0 r^3} \Big( 2\cos^2\theta - \sin^2\theta \Big) e_z$$

( $\theta$  and r are measured from dipole to P)