The Divergence Theorem and Electric Fields

© Frits F.M. de Mul

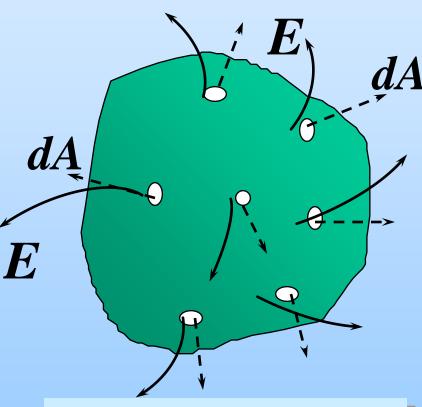
Divergence Theorem and E-field

Presentations:

- Electromagnetism: History
- Electromagnetism: Electr. topics
- Electromagnetism: Magn. topics
- Electromagnetism: Waves topics
- Capacitor filling (complete)
- Capacitor filling (partial)
- Divergence Theorem
- E-field of a thin long charged wire
- E-field of a charged disk
- E-field of a dipole
- E-field of a line of dipoles
- E-field of a charged sphere
- E-field of a polarized object

- E-field: field energy
- Electromagnetism: integrations
- Electromagnetism: integration elements
- Gauss' Law for a cylindrical charge
- Gauss' Law for a charged plane
- Laplace's and Poisson's Law
- B-field of a thin long wire carrying a current
- B-field of a conducting charged sphere
- B-field of a homogeneously charged sphere

Gauss' Law for *E*-field (1)



volume V; surface A

 $dA \perp$ surface A

E-field arbitrary

Gauss' Law:

$$\iint_{A} \boldsymbol{E} \bullet \boldsymbol{dA} = \frac{Q}{\varepsilon_{0}} = \iiint_{V} \frac{\rho}{\varepsilon_{0}} \, dV$$

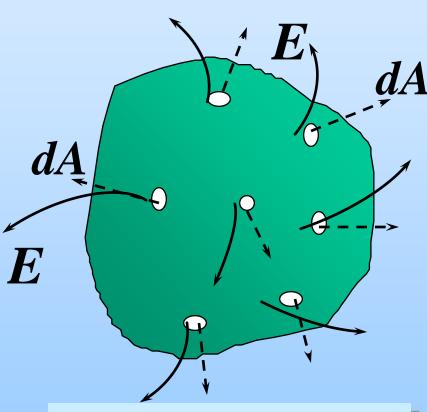
Goal of this integral expression :

to calculate E from Q or ρ ,

provided symmetry present !!!!!

QUESTION: does an inverse expression, to <u>locally</u> calculate $\rho(xyz)$ from E(xyz), exist ??

Gauss' Law for *E*-field (2)



volume V; surface A

 $dA \perp$ surface A

E-field arbitrary

<u>Gauss' Law:</u>

$$\oint_{A} \boldsymbol{E} \bullet \boldsymbol{dA} = \frac{Q}{\varepsilon_{0}} = \iiint_{V} \frac{\rho}{\varepsilon_{0}} \, dV$$

Gauss'Law is a DIMENSION SWITCH

It relates what happens inside the volume

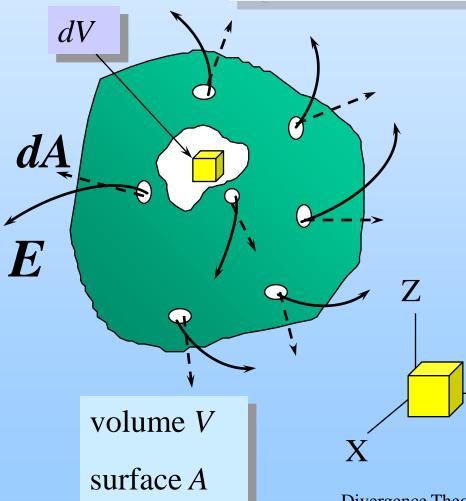
to what you observe at the surface

Other dimension switch relation:

Stokes' Law for magnetic fields

Gauss' Law for *E*-field (3)

Question: calculate local ρ -distribution from *E*-field



<u>Gauss' Law:</u>

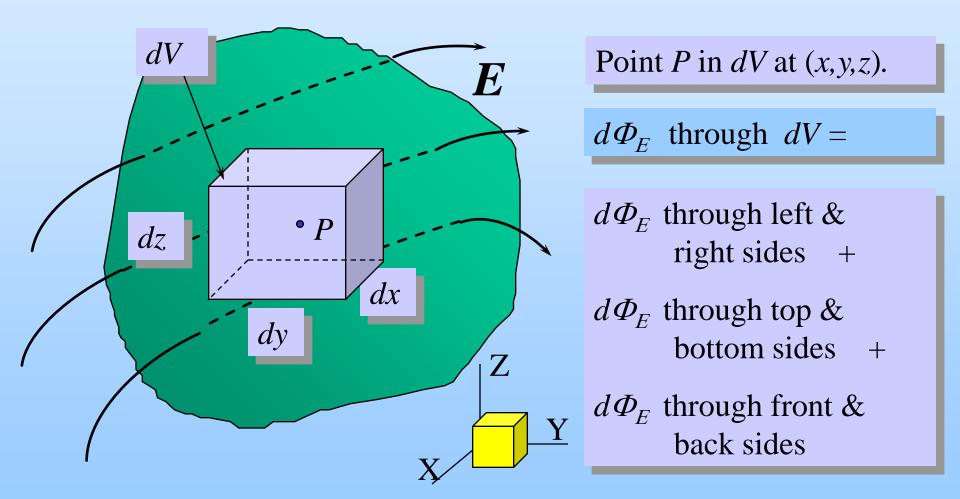
$$\oint_{A} \boldsymbol{E} \bullet \boldsymbol{dA} = \frac{Q}{\varepsilon_0} = \iiint_{V} \frac{\rho}{\varepsilon_0} \, dv$$

<u>to look locally</u>: observe local volume element dV at (xyz)

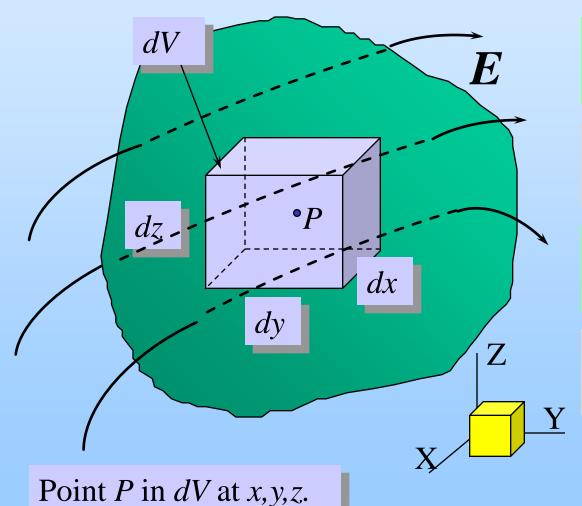
volume element dV has sides dx, dy and dz

Y

The *E*-flux through dV(1)



The *E*-flux through dV(2)



Point P is at (x, y, z)

Calculate outward $d\Phi_E$ through <u>*right*</u> side:

$$d\Phi_E = \mathbf{E}.\mathbf{d}\mathbf{A} = E_y .dxdz$$

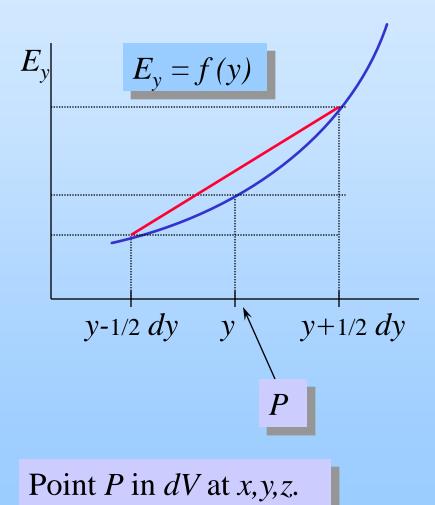
at $(x, y+dy/2, z)$

Calculate outward $d\Phi_E$ through <u>*left*</u> side:

$$d\Phi_E = \mathbf{E.dA} = -E_y .dxdz$$

at $(x, y - dy/2, z)$

The *E*-flux through dV(3)



Net outward flux $d\Phi_E$ through <u>left - right</u> side of dV:

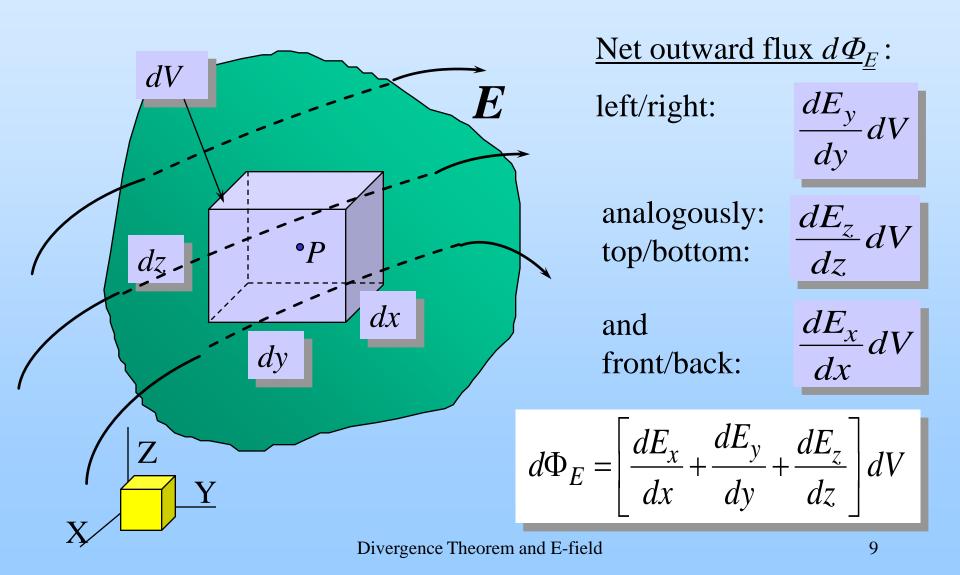
$$d\Phi_E = E_y . dxdz \text{ at } (x, y + dy/2, z)$$
$$- E_y . dxdz \text{ at } (x, y - dy/2, z)$$

$$\mathcal{E}\Phi_{E} = \left(E_{y} + \frac{y}{dy}\frac{1}{2}dy\right)dxdz$$
$$-\left(E_{y} - \frac{dE_{y}}{dy}\frac{1}{2}dy\right)dxdz$$

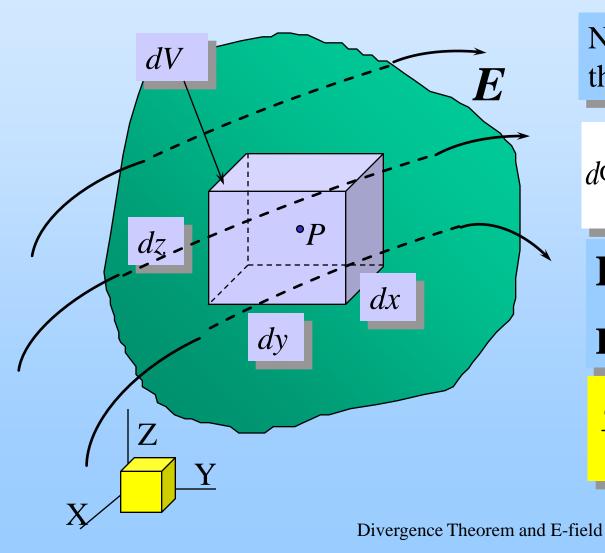
 $\int_{0} \operatorname{result} : d\Phi_E = \frac{dE_y}{dy} dx dy dz = \frac{dE_y}{dy} dV$

Divergence Theor

The *E*-flux through dV(4)



The *E*-flux through dV(5)



Net outward flux $d\Phi_E$ through dV:

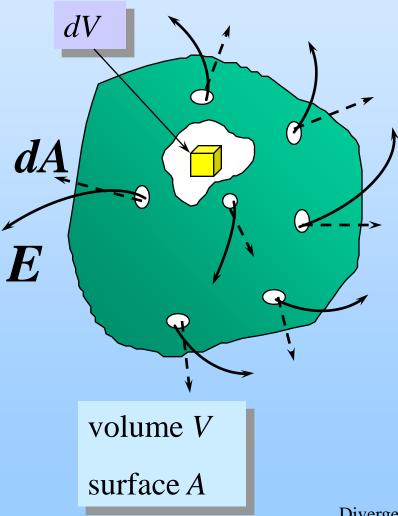
$$d\Phi_E = \left[\frac{dE_x}{dx} + \frac{dE_y}{dy} + \frac{dE_z}{dz}\right]dV$$

DEFINITION of DIVERGENCE *div* :

$$\frac{dE_x}{dx} + \frac{dE_y}{dy} + \frac{dE_z}{dz} \equiv div \ \mathbf{E}$$

 $\Rightarrow d\Phi_E = div E . dV$

Local expression for Gauss' Law

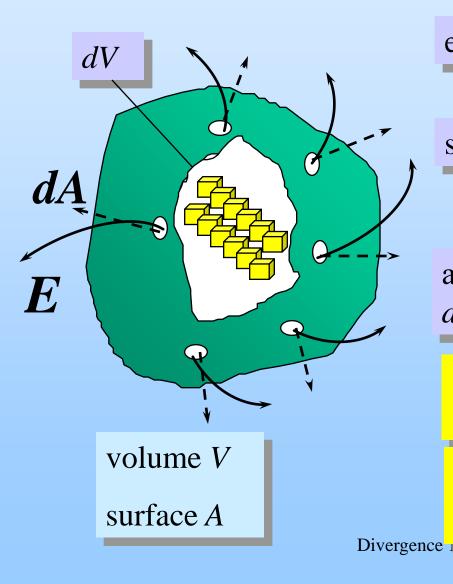


element dV: $d\Phi_E = div E . dV$ enclosed charge in dV: $\rho . dV$ Gauss' Law in local form: $div E = \frac{\rho}{\varepsilon_0}$

where \boldsymbol{E} and ρ are $f(\mathbf{x},\mathbf{y},\mathbf{z})$

Divergence Theorem and E-field

From "local" to "integral"



element
$$dV$$
: $d\Phi_E = div \quad E \ .dV = \frac{\rho}{\varepsilon_0} dV$

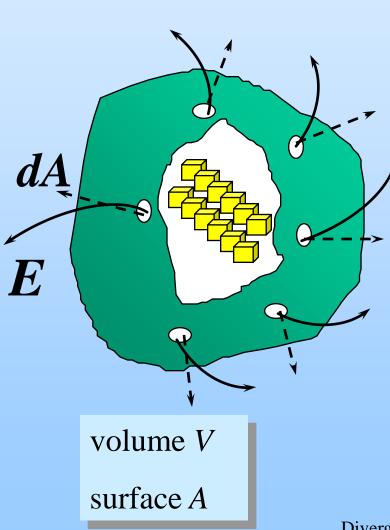
summation over all elements:

all "internal" $d\Phi_E$'s cancel $d\Phi_E$'s at surface *A* remain only !

$$\Phi_E = \oint_A E \bullet dA$$

$$\Phi_E = \iiint_V div \ E \ dV = \iiint_V \frac{\rho}{\varepsilon_0} \ dV = \frac{Q}{\varepsilon_0}$$

How to use the laws?



$$\Phi_E = \oiint_A \boldsymbol{E} \bullet \boldsymbol{dA} = \frac{Q}{\varepsilon_0} = \iiint_V \frac{\rho}{\varepsilon_0} \, dV$$

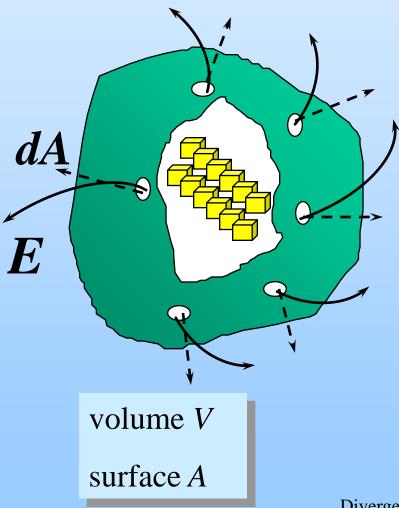
Integral expression:

calculate E from ρ , but in symmetrical situations only !

div
$$\boldsymbol{E}$$
 (x,y,z) = ρ (x,y,z) / ε_0

Differential (local) expression: calculate $\rho(x,y,z)$ from *E*(x,y,z).

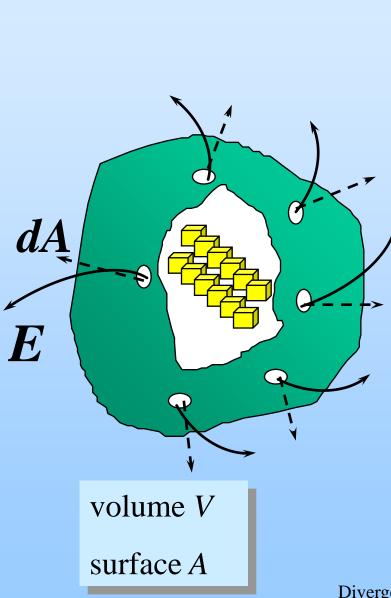
Physical meaning of *div*



$$\Phi_E = \oiint_A \boldsymbol{E} \bullet \boldsymbol{dA} =$$
$$= \iiint_V div \, \boldsymbol{E} \, dV = \iiint_V \frac{\rho}{\varepsilon_0} \, dV = \frac{Q}{\varepsilon_0}$$

$$d\Phi_E = div E . dv \Rightarrow div E = \frac{d\Phi_E}{dv}$$

Divergence = local "micro"-flux per unit of volume [m³]



"Gauss" in general

$$\Phi_E = \oiint_A E \bullet dA =$$

$$= \iiint_V div \ E \ dV = \iiint_V \frac{\rho}{\varepsilon_0} \ dV = \frac{Q}{\varepsilon_0}$$

in accordance with general relation for a vector *X* :

$$\oint_A X.dA = \iiint_V div X dV$$

The Divergence Theorem is used in many fields of physics

Divergence Theorem and E-field

the end 15