Magnetic Field of a Rotating Homogeneously Charged Sphere

© Frits F.M. de Mul

Presentations:

- Electromagnetism: History
- Electromagnetism: Electr. topics
- Electromagnetism: Magn. topics
- Electromagnetism: Waves topics
- Capacitor filling (complete)
- Capacitor filling (partial)
- Divergence Theorem
- E-field of a thin long charged wire
- E-field of a charged disk
- E-field of a dipole
- E-field of a line of dipoles
- E-field of a charged sphere
- E-field of a polarized object

- E-field: field energy
- Electromagnetism: integrations
- Electromagnetism: integration elements
- Gauss' Law for a cylindrical charge
- Gauss' Law for a charged plane
- Laplace's and Poisson's Law
- B-field of a thin long wire carrying a current
- B-field of a conducting charged sphere
- B-field of a homogeneously charged sphere

B-field of a rotating homogeneously charged sphere

Available:

A charged sphere (charge Q, radius R), rotating with ω rad/sec

Question:

Calculate **B**-field in arbitrary points on the axis of rotation inside and outside the sphere

Analysis and Symmetry (1)

Calculate **B**-field in point P inside or outside the sphere

Assume Z-axis through *O* and *P*.

Coordinate systems:

- X,Y, Z
- r, θ , φ

Analysis and Symmetry (2)

Homogeneously charged sphere, volume charge density:

 $\rho = Q/(4\pi R^3/3)$ [C/m³]

Rotating charges will establish a "volume current"

Volume current density j [A/m²] will be a function of (r, θ)

Analysis and Symmetry (3)

Intermezzo (1): a long wire

Biot & Savart:

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I.\,d\mathbf{l} \times \mathbf{e_r}}{r_P^2}$$

note:

r and vector e_r !!

 $dB \perp dl$ and e_r

 $d\mathbf{B} \perp \Delta \text{ AOP}$

Intermezzo (2): a volume current

Biot & Savart:

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{\mathbf{J} \times \mathbf{e_r}}{r_P^2} dv$$

j: current density [A/m²]

 $dB \perp dl$ and e_r

 $d\mathbf{B} \perp \Delta \text{ AOP}$

Intermezzo: volume current (3)

Two circles at r

_Homogeneously charged sphere,

volume density: $\rho = Q/(4\pi R^3/3)$

volume element:

volume element:

 $dv = (dr).(r.d\theta).(r.\sin\theta.d\varphi)$

Homogeneously charged sphere (1)

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{\mathbf{j} \times \mathbf{e_r}}{r_P^2} dv$$

Charge ρ . dv in dv will rotate with ω

 $dl = r.\sin\theta.d\varphi$ $dA = dr.rd\theta$

Needed:

• \boldsymbol{j} , $\boldsymbol{e_r}$, r_P

Homogeneously charged sphere (2)

 $r.\sin\theta.d\varphi$

dv = dA.dl

 $dl = r.\sin\theta.d\varphi$; $dA = dr.rd\theta$

charge in torus with radius $r.\sin\theta$ and cross section dA is: $\rho 2\pi r.\sin\theta$. dA

Full rotation over $2\pi r$ in $2\pi/\omega$ s.

current: $dI = \rho.2\pi r.\sin\theta.dA / (2\pi/\omega) = \rho \omega r \sin\theta.dA$

current density: $j = \rho \omega r \sin \theta \text{ [A/m}^2\text{]}$

Homogeneously charged sphere (3)

Homogeneously charged sphere (4)

Homogeneously charged sphere (5)

B-field of a rotating homogeneously charged sphere

Homogeneously charged sphere (6)

 $dB_z = \frac{\mu_0}{4\pi} \frac{\rho \omega r^4 \sin^3 \theta}{r^3} dr.d\theta.d\varphi$

0 < r < R; $0 < \theta < \pi$; $0 < \varphi < 2\pi$

B-field of a rotating homogeneously charged sphere

Homogeneously charged sphere (7)

result:
$$\boldsymbol{B} = \frac{2\mu_0 \rho \omega R^5}{15.z_p^3} \boldsymbol{e_z}$$

this result holds for $z_P > R$;

for $-R < z_P < R$ the result is:

$$\mathbf{B} = \frac{\mu_0 \rho \omega R^3}{15.z_p^3} \left(5R^2 - 3z_p^2 \right) \mathbf{e}_z$$

and for $z_P < -R$:

B-field of a rotating homogeneously charged sphere

$$\boldsymbol{B} = \frac{2\mu_0 \rho \omega R^5}{-15.z_p^3} \boldsymbol{e_z}$$

Homogeneously charged sphere (8)

result for $|z_P| > R$:

$$\boldsymbol{B} = \frac{2\mu_0 \rho \omega R^3}{15 \left| z_p^3 \right|} \boldsymbol{e}_z$$

result for $|z_P| < R$:

$$\mathbf{B} = \frac{\mu_0 \rho \omega R^3}{15.z_p^3} \left(5R^2 - 3z_p^2 \right) \mathbf{e}_z$$

B points along $+e_z$ for all points everywhere on Z-axis!!

Homogeneously charged sphere (9)

With volume density: $\rho = Q/(4\pi R^3/3)$:

result for
$$|z_P| > R$$
:

$$\boldsymbol{B} = \frac{2\mu_0 \rho \omega R^5}{15.|z_p^3|} \boldsymbol{e}_z = \frac{\mu_0 Q \omega R^2}{10\pi |z_p^3|} \boldsymbol{e}_z$$

result for
$$|z_P| < R$$
:

$$\mathbf{B} = \frac{\mu_0 \rho \omega}{15} \left(5R^2 - 3z_P^2 \right) \mathbf{e}_z = \frac{\mu_0 Q \omega}{20 \pi R^3} \left(5R^2 - 3z_P^2 \right) \mathbf{e}_z$$

Homogeneously charged sphere (10)

Plot of \boldsymbol{B} for: Q = 1

$$\mu_0 = 1$$

$$\omega = 1$$

(in SI-units)

Conclusions (1)

Homogeneously charged sphere

$$|z_P| > R$$

$$\boldsymbol{B} = \frac{\mu_0 Q \omega R^2}{10\pi \left| z_P^3 \right|} \boldsymbol{e}_z$$

$$|z_P| < R$$

$$\mathbf{B} = \frac{\mu_0 Q \omega R^2}{10\pi |z_P|^3} \mathbf{e}_z$$

$$\mathbf{B} = \frac{\mu_0 Q \omega}{20\pi R^3} (5R^2 - 3z_P^2) \mathbf{e}_z$$

Conducting sphere (see other presentation)

$$|z_P| > R$$

$$\boldsymbol{B} = \frac{\mu_0 Q \omega R^2}{6\pi |z_p|^3} \boldsymbol{e}_z$$

$$\boldsymbol{B} = \frac{\mu_0 Q \omega}{6\pi R} \boldsymbol{e}_z$$
logen cousty charged spinor

$$|z_P| < R$$

$$\boldsymbol{B} = \frac{\mu_0 Q \omega}{6\pi R} \, \boldsymbol{e}_z$$

logeneously charged sphere

Conclusions (2)

Plot of **B** for:

$$Q = 1$$

$$\mu_0 = 1$$
 $\omega = 1$

$$\omega = 1$$

(in SI-units)