Magnetic Field of a Rotating Charged <u>Conducting</u> Sphere

2nd version: on-axis and off-axis

© Frits F.M. de Mul www.demul.net/frits

1

Presentations:

- Electromagnetism: History
- Electromagnetism: Electr. topics
- Electromagnetism: Magn. topics
- Electromagnetism: Waves topics
- Capacitor filling (complete)
- Capacitor filling (partial)
- Divergence Theorem
- E-field of a thin long charged wire
- E-field of a charged disk
- E-field of a dipole
- E-field of a line of dipoles
- E-field of a charged sphere
- E-field of a polarized object

- E-field: field energy
- Electromagnetism: integrations
- Electromagnetism: integration elements
- Gauss' Law for a cylindrical charge
- Gauss' Law for a charged plane
- Laplace's and Poisson's Law
- B-field of a thin long wire carrying a current
- B-field of a conducting charged sphere
- B-field of a homogeneously charged sphere

Presentations and programs (free) can be downloaded from: www.demul.net/frits

B-field of a rotating charged <u>conducting</u> sphere

Available:

A charged conducting sphere (charge Q, radius R), rotating with ω rad/sec

Question:

Calculate *B*-field in arbitrary points inside and outside the sphere

- I. on the axis of rotation
- II. off-axis

Ad. I : analytical approach possible Ad. II : numerical approach needed B -FIELD OF A SPHERE OR SPHERE SEGMENT --- XY-plane at Z=0. Modulus of B, normalised on B in O (= 1.33371E-06 T)

10 - 🔪	N	4	4	1	1	1	1	-	-	-	~	~	\mathbf{x}	X	N	1	Ť	1	1	1
- X	\mathbf{A}	Λ	4	4	1	1	1	1	-	+	~	\sim	∞	A.	Λ.	T.	1	1	1	1
	Δ	Λ	Λ	4	1	1	1	1	-	+	~	\sim	\mathbf{N}	Λ.	1	T.	1	1	1	1
- N	Δ	Δ	Λ	4	4	1	1	1	-	+	~	\sim	\mathbf{N}	۸.	T.	1	1	1	1	1
	\sim	$\langle X \rangle$	$\langle X \rangle$	Λ	4	4	1	1	-	+	\sim	∞	Λ.	T.	1	1	1	1	1	1
- N	\sim	\sim	$\langle N \rangle$	$\langle X \rangle$	$\Lambda_{\rm c}$	4	1	1	-111			1	1	1	1	1	1	1	1	1
- 💊	\sim	\sim	\sim	\sim	$\langle X \rangle$	Λ	\mathbf{X}	[[-•			-+		٦ĸ.	1	1	1	1	1	1	1
~	~	~	\sim	\sim	$\langle N \rangle$	\mathbf{A}	•	•		++	-+		+++	K	1	1	1	1	1	1
	~	~	~	~	~	1+	•	•			-+		+++	-++)	-	1	^	-	-	-
			~	~	4		•	•			-+		+++		+	-	-			
0						+	-++		-+•	++	-+	-++	+++	+						
-			-	-	4	+	-++		++	++	-+	-++	+++	+	F -	~	~		+	
	-	-	-	1	المر		-++		-+•	++	-+	-++	+++	IH)	/~	~	~	~	~	~
-	1	1	1	1	1), W	-++		++	++	-+	-++	+++		$\langle N \rangle$	\sim	\sim	~	~	~
	1	1	1	1	1	1			++	++	-+			N	$\langle X \rangle$	$\langle N \rangle$	\sim	\sim	\sim	\sim
1	1	1	1	1	1	1	1	1	1 1 1 1 1	Щ		1	1	1	$ \mathbf{A} $	$\langle X \rangle$	$\langle N \rangle$	$\langle N \rangle$	\sim	(\mathbf{N})
- 1	1	1	1	1	1	T.	Λ.	$\langle N \rangle$	\sim	+	-	1	1	4	4	$ \mathbf{A} $	$\langle X \rangle$	$\langle X \rangle$	$\langle N \rangle$	(\mathbf{N})
1	1	1	1	1	1	۸.	Δ.	\sim	~	+	-	1	1	1	4	4	$\Lambda_{\rm c}$	$ \mathbf{X} $	$\langle X \rangle$	(\mathbf{N})
- 1	1	1	1	1	1	Λ.	Ν.	\sim	~	+	-	1	1	1	4	4	$\Lambda_{\rm c}$	$ \mathbf{X} $	$\Delta_{\rm c}$	$\Delta_{\rm eff}$
1	1	1	1	1	۸.	Λ.	$\langle N \rangle$	\sim	~	+	-	1	1	1	1	4	4	$\Lambda_{\rm c}$	$\langle X \rangle$	$\Delta_{\rm eff}$
-10 /	1	1	T.	1	N.	Ν	$\langle N \rangle$	\sim	~	+	-	-	1	1	1	4	4	4	$\Lambda_{\rm c}$	N.
-10	I	I			-5		Y-24	is (rot	ation	0		vic) /		I	5		<u> </u>			10
							V-qx	13 (100	auon	эунш	ieu y a	~isj /	CITI							

Objective:

B-field: of a charged conductive sphere rotating around the X-axis

Inside the sphere: homogeneous field 4

Analysis and Symmetry for on-axis (1)

Assume P on Z-axis.

Part I. Calculate *B*-field in point *P*

on the axis of rotation (Z-axis)

inside or outside the sphere

(Part II: points P off-axis)

Coordinate systems:

- X,Y, Z
- r, θ, φ

Symmetry: around rotation axis.

Analysis and Symmetry for on-axis (2)

<u>Conducting sphere</u>, all charges at surface: surface charge density: $\sigma = Q/(4\pi R^2)$ [C/m²]

Rotating charges will establish a "surface current",

directed along surface circles.

Surface current density *j*' [A/m]:

will be a function of θ

B-field of a rotating charger commence of the second secon

Analysis and Symmetry for on-axis (3)

 $\boldsymbol{dB} = \frac{\mu_0}{4\pi} \frac{I.\,\boldsymbol{dl} \times \boldsymbol{e_r}}{r_P^2}$ $dB \perp dl$ and e_r . if P = on-axis: $dl \perp e_r$

Direction of *dB*:

Cylindrical symmetry around Z-axis:

Z-comp. only !! X- and Y-comp.

Analysis and Symmetry for on-axis (4)

Intermezzo: a surface current

Analysis and Symmetry for on-axis (4)

Biot & Savart :

$$\mathbf{dB} = \frac{\mu_0}{4\pi} \frac{\mathbf{j}' db. dl \times \mathbf{e_r}}{{r_P}^2} = \frac{\mu_0}{4\pi} \frac{\mathbf{j}' \times \mathbf{e_r}}{{r_P}^2} dA$$

dB, dl and e_r mutually perpendicular

> Needed: expressions for: dA, j', e_r , r_P

Conducting sphere: on-axis (3)

d₩

 $d\phi$

B-field of a rotating cl

 $R.\sin\theta.d\phi$

 $R.d\ell$

Ζ

 $R\sin\theta$

 $\frac{\text{Ring on surface}}{2\pi (R.\sin\theta).(Rd\theta)}$

 $\frac{\text{Charge on ring}}{\sigma}: 2\pi R.\sin\theta \cdot Rd\theta$

Full rotation over 2π in $2\pi/\omega$ s.

current: $dI = \sigma . 2\pi R . \sin \theta . R d\theta / (2\pi/\omega)$ = $\sigma \omega R \sin \theta . R d\theta$

<u>current density</u>: $j' = dI / (Rd\theta) =$

Conducting sphere: on-axis (7)

Conducting sphere: on-axis (8)

$$B_{Z} = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\theta \frac{\mu_{0}}{4\pi} \frac{\sigma \omega R^{4} \sin^{3} \theta}{r_{P}^{3}} \quad \text{with:} \\ r_{P}^{2} = (R.\sin\theta)^{2} + (z_{P} - R.\cos\theta)^{2}$$

Set:
$$\frac{z_P}{R} = q$$
, and: $\cos \theta = x$, and with $a = 1 + q^2$ and $b = -2q$:
 $B_z = \int_{-1}^{+1} \frac{x^2 - 1}{(a + bx)^{3/2}} dx = \frac{8}{3b^3} \left[(b - 2a)\sqrt{a + b} + (b + 2a)\sqrt{a - b} \right]$

(Set a+bx = y, and express dx and x^2-1 in dy and y, and integrate...)

4 solutions, depending on $\sqrt{(..)}$ -terms:

1.
$$z_P \leq -R$$

2. $-R \leq z_P \leq 0$
3. $0 \leq z_P \leq R$
4. $z_P \geq R$

 $\begin{array}{c} 4 \\ \hline 3 \\ \hline 2 \\ \hline 1 \\ \end{array}$

Conducting sphere: on-axis (9)

result :
$$\mathbf{B}_{p} = \frac{2\mu_{0}\sigma\omega R^{4}}{3.z_{p}^{3}}\mathbf{e}_{z}$$

this result holds for $z_P > R$;

for $-R < z_P < R$ the result is:

$$\mathbf{B}_{P} = \frac{2}{3} \,\mu_0 \boldsymbol{\sigma} \boldsymbol{\omega} \boldsymbol{R} \, \mathbf{e}_{\mathbf{z}}$$

and for
$$z_P < -R$$
: $\mathbf{B}_P = \frac{2\mu_0 \sigma \omega R^4}{-3.z_p^3} \mathbf{e}_z$

B directed along $+e_z$ for all points everywhere on Z-axis !!

inside sphere: constant field !!

Conclusion: inside conducting sphere: **on-axis**: field = constant.

Question: what about the field inside the sphere, but off-axis?

To be investigated in part II ==>

Conclusions for on-axis (1)

Conducting sphere

$$|z_{p}/ > R \qquad |z_{p}/ < R$$
$$\boldsymbol{B} = \frac{\mu_{0}Q\omega R^{2}}{6\pi |z_{p}^{3}|} \boldsymbol{e}_{z} \qquad \boldsymbol{B} = \frac{\mu_{0}Q\omega}{6\pi R} \boldsymbol{e}_{z}$$

$$Q = \sigma.4\pi R^2$$

Homogeneously charged sphere

(see other presentation)

 $|z_P| > R$

$$|z_P| < R$$

$$\boldsymbol{B} = \frac{\mu_0 Q \omega R^2}{10 \pi \left| z_P^3 \right|} \boldsymbol{e}_z$$

 $\boldsymbol{B} = \frac{\mu_0 Q \omega}{20 \pi R^3} \left(5R^2 - 3z_P^2 \right) \boldsymbol{e}_z$

Conclusions for on-axis (2)

Part II. Calculate **B**-field in point P off the axis of rotation (Z-axis) inside or outside the sphere

Rotation axis (Z-axis) =

= symmetry axis.

Assume P (0, y_P , z_P) in YZ-plane.

Coordinate systems:

Conducting sphere: off-axis (1)

Conducting sphere: off-axis (2)

Conducting sphere: off-axis (2)

Conducting sphere: off-axis (4)

Available for download on <u>www.demul.net/frits</u>: offline program: EM_solenoids in file: EM_programs.zzz on subpage Electromagnetism

This program can calculate:

- **B-** and **A**-fields for:
- Single solenoids
- Pairs of solenoids
 - Dipole fields
- Field of a rotating charged conducting sphere
 - and sphere segments

1. Rotating charged conducting sphere

Properties:

- Charge = 1 C
- Radius = 5 cm
- Velocity = 1 rad/s = 0.1592 rev./s
- NB. Rotation axis = symmetry axis = X-axis; Fields shown in XY-plane at Z=0.

1. Rotating charged conducting sphere: settings:

Options

- Single solenoid
- Pair of solenoids
- O Dipolar far-field approximation
- Conducting sphere or sphere segment

Field pattern

- B : Field line vectors
- B : Modulus, values
- B : Modulus, squares
- B : X-components, values
- B : X-components, squares
- B : Y-components, values
- B : Y-components, squares
- A : Z-components, values
- A : Z-components, squares

X-axis =	rotation	(symme	etry) a	xis											
Sphere r	adius nter in C)	5.0	0											
Charge		1.0	1.000E+00												
Charge d segment	Charge density on sphere/ segment: 3.183E+01 C/m^2														
Rotation [revolution	Rotation velocity [revolutions/sec]														
Idem : 1	.000E+	00 rad/s	5												
Current of plane (X=	lensity a =0): 1.	at YZ-eq 592E+00	uator) A/m												
Polar ang	le [deg]	:													
min:	0.00	max:	180.	00											
Angular i on spher	nterval e [deg]		2.0	0											
Plot dimensi	ons [cm	1]													
X left	-10.0	X	right	10).0										
Y low	-10.0] Y	high	10).0										
Interval	1.0	Fon (px)	it size)	12	•										

	B -FIELD OF A SPHERE OR SPHERE SEGMENT XY-plane at Z=0. Modulus of B, normalised on B in O (= $1.33371E-06$ T)																				
10	- 3	4	4	5	5	6	6	6	6	6	6	6	6	6	6	6	5	5	4	4	3
	4	5	5	6	7	7	8	8	9	9	9	9	9	8	8	7	7	6	5	5	4
	- 5	6	7	8	9	10	11	12	12	12	12	12	12	12	11	10	9	8	7	6	5
	6	7	9	10	12	14	16	17	18	18	18	18	18	17	16	14	12	10	9	7	6
	- 7	9	11	13	16	20	23	26	28	29	29	29	28	26	23	20	16	13	11	9	7
	8	10	13	17	22	28	35	42	48	48	-25-	-48,	48	42	35	28	22	17	13	10	8
	- 9	12	16	22	29	40	55	52	100	100	100	100	100	52	55	40	29	22	16	12	9
	11	14	19	27	38	56	98	100	100	100	100	100	100	100	98	56	38	27	19	14	11
	- 12	16	22	31	48	76	100	100	100	100	100	100	100	100	100	76	48	31	22	16	12
	12	17	24	35	55	92	100	100	100	100	100	100	100	100	100	92	55	35	24	17	12
0	— 12··	17	24	36	58	100	100	100	100	100	100	100	100	100	100	100-	58	36	24	17	- 13
	12	17	24	35	55	92	100	100	100	100	100	100	100	100	100	92	55	35	24	17	12
	- 12	16	22	31	48	76	100	100	100	100	100	100	100	100	100	76	48	31	22	16	12
	11	14	19	27	38	56	98	100	100	100	100	100	100	100	98	56	38	27	19	14	11
	- 9	12	16	22	29	40	55	52	100	100	100	100	100	52	55	40	29	22	16	12	9
	8	10	13	17	22	28	35	42	48	48-	25	48	48	42	35	28	22	17	13	10	8
	- 7	9	11	13	16	20	23	26	28	29	29	29	28	26	23	20	16	13	11	9	7
	6	7	9	10	12	14	16	17	18	18	18	18	18	17	16	14	12	10	9	7	6
	- 5	6	7	8	9	10	11	12	12	12	12	12	12	12	11	10	9	8	7	6	5
	4	5	5	6	7	7	8	8	9	9	9	9	9	8	8	7	7	6	5	5	4
-10	- 3	4	4	5	5	6	6	6	6	6	6	6	6	6	6	6	5	5	4	4	3
	-10					-5		X-ax	is (rot	ation	0 symm	etry a	xis) /	cm		5					10

B-field: Sphere rotating around X-axis

Inside the sphere: homogeneous field

Field strength inside = 1.3337 µT

Conducting sphere rotating around X-axis : *B* and *A*-fields

B-field: Cross section of sphere: XY-plane at Z=0:

Inside the sphere: Homogeneous **B**-field == > **A**-field varies linearly with y-coordinate (due to derivatives in *rot* (*curl*) Expression for a surface current:

$$dB = \frac{\mu_0}{4\pi} \frac{j' \times e_r}{r^2} dA$$

A-field: Vector potential: $B = \operatorname{rot} A (= \operatorname{curl} A)$

$$dA = \frac{\mu_0}{4\pi} \frac{j'}{r} dA$$

B and **A** : perpendicular fields.

For points in XY-plane: *B* in XY-plane, no Z-component A^{\perp} XY-plane, Z-component only.

For points outside XY-plane: Cylindrical symmetry around X-axis.

в-него ог а гоганид спarged conducting sphere

1	A - FIE A(z)-c	ompo	- A SF nent,	norma	OR S alized	on 10	0 at A	MENI = 1.	.03353	Y-pla 3E-09	ne at z N/A	2=0 -	ax	es in c	:m	X-ax	(is = s	ymme	etry ax	(İS	
10	- 9	10	12	14	16	18	20	22	24	25	25	25	24	22	20	18	16	14	12	10	9
	9	11	13	15	18	21	24	27	29	31	31	31	29	27	24	21	18	15	13	11	9
-	10	12	14	17	20	24	28	33	36	39	40	39	36	33	28	24	20	17	14	12	10
	10	12	15	18	23	28	34	40	46	50	52	50	46	40	34	28	23	18	15	12	10
-	10	12	15	19	25	32	41	50	60	68	70	68	60	50	41	32	25	19	15	12	10
	9	12	15	20	27	36	48	64	81	_ 96	-100-	-96_	81	64	48	36	27	20	15	12	9
-	8	11	14	19	27	39	56	81	81	81	81	81	81	81	56	39	27	19	14	11	8
	7	9	12	17	25	38	61	61	61	61	61	61	61	61	61	38	25	17	12	9	7
-	5	6	9	13	20	32/	41	41	41	41	41	41	41	41	41	32	20	13	9	6	5
	2	3	5	7	11	19	20	20	20	20	20	20	20	20	20	19	11	7	5	3	2
0	0	0	0	0	···0····	0	0	0	0	0	0	0	0	0	0	0	···0···	···0···	···0····	0	····0····
	-2	-3	-5	-7	-11	-19	-20	-20	-20	-20	-20	-20	-20	-20	-20	-19	-11	-7	-5	-3	-2
(<mark></mark>	-5	-6	-9	-13	-20	-32	-41	-41	-41	-41	-41	-41	-41	-41	-41	-32	-20	-13	-9	-6	-5
	-7	-9	-12	-17	-25	-38	-61	-61	-61	-61	-61	-61	-61	-61	-61	-38	-25	-17	-12	-9	-7
	-8	-11	-14	- <mark>1</mark> 9	-27	-39	-56	-81	-81	-81	- <mark>8</mark> 1	-81	-81	-81	-56	-39	-27	-19	-14	-11	-8
	-9	-12	-15	-20	-27	-36	- 4 8	-64	-81	-96 ⁻	100-	96	-81	-64	- <mark>4</mark> 8	-36	-27	-20	-15	-12	-9
_	-10	-12	-15	- 1 9	-25	-32	-41	-50	-60	- <mark>68</mark>	-70	-68	-60	-50	- <mark>4</mark> 1	-32	-25	-19	-15	-12	-10
	-10	-12	-15	-18	-23	-28	-34	-40	-46	-50	-52	-50	- <mark>4</mark> 6	-4 0	-34	-28	-23	-18	<mark>-1</mark> 5	-12	- <mark>1</mark> 0
-	-10	-12	-14	-17	-20	-24	-28	-33	-36	-39	-40	-39	-36	-33	-28	-24	-20	-17	-14	-12	-10
	-9	-11	-13	-15	-18	-21	-24	-27	-29	-31	-31	-31	-29	-27	-24	-21	-18	-15	-13	-11	-9
10	9	-10	-12	-14	-16	-18	-20	-22	-24	-25	-25	-25	-24	-22	-20	-18	-16	-14	-12	-10	-9
	-10		- P		1	-5					0	1	 52 15			5	18	E	1	1	10
								X-ax	is (rot	ation	symm	etry a	xis) /	cm							

A-field: Sphere rotating around X-axis

A = 0 at rotation symmetry axis

33

2. Rotating charged conducting sphere segment between 45⁰ and 135⁰ (ring shape)

Properties:

- Charge = 1 C
- Radius = 5 cm
- Velocity = 1 rad/s = 0.1592 rev./s

B-field: Sphere segment (ring shape) rotating around X-axis

Field already looks like a solenoid field

10 3	4 4 5 6	5	5	6	(1	.0072	200	.,											
10— 3 4	4 4 5 6	5	5	6															
4	56	6		0	6	7	7	7	7	7	7	7	6	6	5	5	4	4	3
		0	7	8	9	9	9	9	9	9	9	9	9	8	7	6	6	5	4
- 5	6 /	8	9	11	12	13	13	13	13	13	13	13	12	11	9	8	7	6	5
6	7 8	10	12	15	17	19	20	20	20	20	20	19	17	15	12	10	8	7	6
- 7	8 10	13	16	21	26	30	32	33	33	33	32	30	26	21	16	13	10	8	7
8 1	10 13	16	22	29	40	50	56	_ 52 .	-28-	-52_	56	50	40	29	22	16	13	10	8
- 9 1	11 15	20	27	40	64	90	111	110	110	110	111	90	64	40	27	20	15	11	9
10 1	13 17	23	32	47	75	102	105	106	107	106	105	102	75	47	32	23	17	13	10
- 10 1	14 18	25	35	50/	70	88	98	102	103	102	98	88	70	50	35	25	18	14	10
11 1	14 19	26	36	50	67	83	94	99	101	99	94	83	67	\ 50	36	26	19	14	11
0 - 11 1	1419-	27	37	50	66	81	92	98	100	98	92	81	66	50	37	27	19	- 14	- 11
11 1	14 19	26	36	50	67	83	94	99	101	99	 94	83	67) 50	36	26	19	14	11
- 10 1	14 18	25	35	50	70	88	98	102	103	102	98	88	70	50	35	25	18	14	10
10 1	13 17	23	32	47	75	102	105	102	107	102	105	102	75	47	32	23	17	13	10
- 0 1	13 17	20	32	40	64			110	110	110			64	40	32	20	15	11	10
9 1	11 13	16	27	40	40	90J			110			50	40	40	27	16	13	10	9
0	10 13	10	22	29	40	50	20	52	28	52	20	50	40	29	22	10	13	10	0
	8 10	13	16	21	26	30	32	33	33	33	32	30	26	21	16	13	10	8	
6	/ 8	10	12	15	17	19	20	20	20	20	20	19	17	15	12	10	8	1	6
- 5	67	8	9	11	12	13	13	13	13	13	13	13	12	11	9	8	7	6	5
4	56	6	7	8	9	9	9	9	9	9	9	9	9	8	7	6	6	5	4
-10 3	4 4	5	5	6	6	7	7	7	7	7	7	7	6	6	5	5	4	4	3
-10	· · · ·		1	-5		V	in (-	0					5			1		10

B-field: Sphere segment (ring shape) rotating around X-axis

Field already looks like a solenoid field

3. Rotating charged conducting sphere segment between 120⁰ and 180⁰ (bowl shape)

Properties:

- Charge = 1 C
- Radius = 5 cm
- Velocity = 1 rad/s = 0.1592 rev./s

B-field: Sphere segment (bowl shape) rotating around X-axis

Field already looks like a dipolar field

	B -FIELD OF A SPHERE OR SPHERE SEGMENT XY-plane at Z=0. Modulus of B, normalised on B in O (= $8.33341E-07 T$)																					
10		5	6	6	7	7	7	7	7	7	7	7	6	6	5	5	4	4	3	3	3	2
10		7	7	8	, Q	10	, 10	10	10	10	, 10	Ó	Q	8	7	6	5	5	4	3	3	-
		י 8	, 10	11	13	14	15	15	15	15	10	13	12	10	, 0	8	5	5	5	4	3	3
		11	10	15	10	21	13	13	15	15	13	20	17	10	11	0	0	5	5	т И	1	у Э
		14	13	13	10	21	20	42	25	25	20	20	17	14	11	12	0	0	5	4	4	2
		14	17	21	20	52	50	45	40	40	50	50	24	10	15	12	9	,	0	5	4	4
		1/	22	29	39	51	66	85	109	99	_ 65 -	-45-	-33_		18	14	11	9	/	6	5	4
		21	29	40	56	80	11/	1//	109	205	102	64	43	30	22	1/	13	10	8	6	5	4
		25	35	51	77	121	199	368	338	216	128	80	53	36	26	19	14	11	8	7	5	4
	-	28	41	63	100	168	303/	394	308	216	141	92	61	41	29	21	\ 15	12	9	7	6	5
		31	46	71	117	207	395	378	297	216	147	98	65	44	31	22	16	12	9	7	6	5
0		-32	47	74-	124 -	-223 -	··440	373	294	216	149	100	67	45	32	22	16	12	···9···	7	6	5
		31	46	71	117	207	395	378	297	216	147	98	65	44	31	22	16 /	12	9	7	6	5
	F	28	41	63	100	168	303	394	308	216	141	92	61	41	29	21	/ 15	12	9	7	6	5
		25	35	51	77	121	199	368	338	216	128	80	53	36	26	19	14	11	8	7	5	4
	-	21	29	40	56	80	117	177	109	205	102	64	43	30	22	17	13	10	8	6	5	4
		17	22	29	39	51	66	85	109	99	65	- 45	-33	24	18	14	11	9	7	6	5	4
	-	14	17	21	26	32	38	43	46	45	38	30	24	18	15	12	9	7	6	5	4	4
		11	13	15	18	21	23	24	25	25	23	20	17	14	11	9	8	6	5	4	4	3
	-	8	10	11	13	14	15	15	15	15	15	13	12	10	9	8	6	5	5	4	3	3
		7	7	8	9	10	10	10	10	10	10	9	9	8	7	6	5	5	4	3	3	3
-10	-	5	6	6	7	7	7	7	7	7	7	7	6	6	5	5	4	4	3	3	3	2
		-10				1	-5	1				0			1	1	5			1	1	10
									X-ax	is (rot	ation	symm	etry a	XIS) /	cm							

B-field: Sphere segment (bowl shape) rotating around X-axis

Field already looks like a dipolar field

